Skip to main content
Log in

Preliminary Study of Assessing Bladder Urinary Volume Using Electrical Impedance Tomography

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

A non-invasive method based on electrical impedance tomography (EIT) is presented for the continuous assessment of human bladder urinary volume. An EIT system developed for bladder urinary volume imaging is first introduced. To validate the system and to examine the feasibility of estimating bladder fullness with EIT, an ex vivo experiment with four porcine bladders and an observational study of bladder urine filling in six healthy volunteers was conducted. Four porcine bladders were filled with saline solution with various concentrations and separately placed in a cylindrical tank. Each bladder was filled from 0 to 600 ml in increments of 100 ml. EIT measurements were performed and the maximum diameters of the bladders were recorded. For the observational study, bladder filling from empty to the status of strong micturition desire was monitored by EIT. The average conductivity index (ACI) was derived from the EIT images to quantify the bladder filling. For comparison, a four-electrode method, which is described in previous studies, was also applied. The results show a high positive linear correlation between the ACI and the bladder urinary volume in all subjects (correlation coefficient R = 0.98 ± 0.01, p < 0.001), with the performance of the four-electrode method being much poorer (correlation coefficient R = −0.27 ± 0.82, p < 0.001). This study demonstrates that EIT has the ability to distinguish bladder urinary volumes and thus has potential as a practical and effective technique for assessing bladder urinary volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Birder, L. A., & de Groat, W. C. (2007). Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nature clinical practice Urology, 4, 46–54.

    Article  Google Scholar 

  2. Warren, J. W. (1997). Catheter-associated urinary tract infections. Infectious Disease Clinics of North America, 11, 609–622.

    Article  Google Scholar 

  3. Wyndaele, J. J. (2002). Complications of intermittent catheterization: Their prevention and treatment. Spinal Cord, 40, 536–541.

    Article  Google Scholar 

  4. Holmes, J. H. (1967). Ultrasonic studies of the bladder. Journal of Urology, 97, 654–663.

    Google Scholar 

  5. Hwang, J. Y., Byun, S. S., Oh, S. J., & Kim, H. C. (2004). Novel algorithm for improving accuracy of ultrasound measurement of residual urine volume according to bladder shape. Urology, 64, 887–891.

    Article  Google Scholar 

  6. Toozs, H. P., Khullar, V., & Cardozo, L. (2001). Three-dimensional ultrasound: a novel technique for investigating the urethral sphincter in the third trimester of pregnancy. Ultrasound in Obstetrics and Gynecology, 17, 421–424.

    Article  Google Scholar 

  7. Anton, H. A., Chambers, K., Clifton, J., & Tasaka, J. (1998). Clinical utility of a portable ultrasound device in intermittent catheterization. Archives of Physical Medicine and Rehabilitation, 79, 172–175.

    Article  Google Scholar 

  8. Ridder, D. D., Poppel, H. V., Baert, L., & Binard, J. (1997). From time dependent intermittent selfcatheterisation to volume dependent selfcatheterisation in multiple sclerosis using the PCI 5000 Bladdermanager. Spinal Cord, 35, 613–616.

    Article  Google Scholar 

  9. Kristiansen, M. N., Djurhuus, J. C., & Nygaard, H. (2004). Design and evaluation of an ultrasound-based bladder volume monitor. Medical and Biological Engineering and Computing, 42, 762–769.

    Article  Google Scholar 

  10. Pretlow, R. A. (1999). Treatment of nocturnal enuresis with an ultrasound bladder volume controlled alarm device. The Journal of Urology, 162, 1224–1228.

    Article  Google Scholar 

  11. Koldewijn, E. L., Kerrebroeck, P. E. V., Schaafsma, E., Wijkstra, H., Debruyne, F. M., & Brindley, G. S. (1994). Bladder pressure sensors in an animal model. The Journal of Urology, 151, 1379–1384.

    Google Scholar 

  12. Takayama, K., Takei, M., Soejima, T., & Kumazawa, J. (1987). Continuous monitoring of bladder pressure in dogs in a completely physiological state. British Journal of Urology, 60, 428–432.

    Article  Google Scholar 

  13. Talibi, M. A., Drolet, R., Kunov, H., & Robson, C. J. (1970). A model for studying the electrical stimulation of the urinary bladder of dogs. British Journal of Urology, 42, 56–65.

    Article  Google Scholar 

  14. Waltz, F. M., Timm, G. W., & Bradley, W. E. (1971). Bladder volume sensing by resistance measurement. IEEE Transactions on BioMedical Engineering, 18, 42–46.

    Article  Google Scholar 

  15. Denniston, J. C., & Baker, L. E. (1975). Measurement of urinary bladder emptying using electrical impedance. Medical and Biological Engineering and Computing, 13, 305–306.

    Article  Google Scholar 

  16. Kim, C. T., Linsenmeyer, T. A., Kim, H., & Yoon, H. (1998). Bladder volume measurement with electrical impedance analysis in spinal cord-injured patients. American Journal of Physical Medicine and Rehabilitation, 77, 498–502.

    Article  Google Scholar 

  17. Liao, W. C., & Jaw, F. S. (2011). Noninvasive electrical impedance analysis to measure human urinary bladder volume. Journal of Obstetrics and Gynaecology Research, 37, 1071–1075.

    Article  Google Scholar 

  18. Shida, K., & Yagami, S. (2006). A non-invasive urination-desire sensing system based on four-electrodes impedance measurement method. Proceedings of the IEEE Annual Conference Industrial Electronics, 1, 2975–2978.

    Google Scholar 

  19. Cheney, M., Isaacson, D., & Newell, J. C. (1999). Electrical impedance tomography. SIAM Review, 41, 85–101.

    Article  MathSciNet  MATH  Google Scholar 

  20. Bayford, R., & Tizzard, A. (2012). Bioimpedance imaging: An overview of potential clinical applications. Analyst, 137, 4635–4643.

    Article  Google Scholar 

  21. Leonhardt, S., Cordes, A., Plewa, H., Pikkemaat, R., Soljanik, I., Moehring, K., et al. (2011). Electric impedance tomography for monitoring volume and size of the urinary bladder. Biomedizinische Technik, 56, 301–307.

    Article  Google Scholar 

  22. Schlebusch, T., Nienke, S., Santos, S. A., & Leonhardt, S. (2013). Bladder volume estimation from electrical impedance tomography. Proceedings of the IEEE Annual International Conference Medicine and Biology Society, 1, 6441–6444.

    Google Scholar 

  23. He, W., Ran, P., Xu, Z., Li, B., & Li, S. (2012). A 3D visualization method for bladder filling examination based on EIT. Computational and Mathematical Methods in Medicine, 2012, 1–9.

    MathSciNet  MATH  Google Scholar 

  24. Schmidt, M. W. (2005). IEC 60601-1, 2005: A revolutionary standard, Part 1. Medical Device and Diagnostic Industry, 27, 50–56.

    Google Scholar 

  25. Adler, A., & Guardo, R. (1996). Electrical impedance tomography: Regularized imaging and contrast detection. IEEE Transactions on Medical Imaging, 15, 170–179.

    Article  Google Scholar 

  26. Adler, A., & Lionheart, W. R. B. (2006). Uses and abuses of EIDORS: An extensible software base for EIT. Physiological Measurement, 27, S25–S42.

    Article  Google Scholar 

  27. Hahn, G., Beer, M., Frerichs, I., Dudykevych, T., Schröder, T., & Hellige, G. (2000). A simple method to check the dynamic performance of electrical impedance tomography systems. Physiological Measurement, 21, 53–60.

    Article  Google Scholar 

  28. Li, R., Gao, J., Wang, H., & Jiang, Q. (2013). Design of a noninvasive bladder urinary volume monitoring system based on bio-impedance. Engineering, 5, 321–325.

    Article  Google Scholar 

  29. Kushner, R. F. (1992). Bioelectrical impedance analysis: a review of principles and applications. Journal of the American College of Nutrition, 11, 199–209.

    MathSciNet  Google Scholar 

  30. Schlebusch, T., Nienke, S., Leonhäuser, D., Grosse, J., & Leonhardt, S. (2013). Optimal electrode positions to determine bladder volume by bioimpedance spectroscopy. Lecture Notes on Impedance Spectroscopy, 4, 67–73.

    Article  Google Scholar 

  31. Luepschen, H., Meier, T., Grossherr, M., Leibecke, T., Karsten, J., & Leonhardt, S. (2007). Protective ventilation using electrical impedance tomography. Physiological Measurement, 28, S247–S260.

    Article  Google Scholar 

  32. Meier, T., Luepschen, H., Karsten, J., Leibecke, T., Grossherr, M., Gehring, H., & Leonhardt, S. (2008). Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Medicine, 34, 543–550.

    Article  Google Scholar 

  33. Zhao, Z., Steinmann, D., Zivkovic, D. M., Martin, J., Frerichs, I., Guttmann, J., & Moller, K. (2010). A lung area estimation method for analysis of ventilation inhomogeneity based on electrical impedance tomography. Journal of X-Ray Science Technology, 18, 171–182.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by Guangdong Province’s Key Laboratory of Construction Project-Sensor Technology and Biomedical Instruments, China (2011A060901013) and the National Natural Science Foundation of China (51205423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwu Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Gao, J., Li, Y. et al. Preliminary Study of Assessing Bladder Urinary Volume Using Electrical Impedance Tomography. J. Med. Biol. Eng. 36, 71–79 (2016). https://doi.org/10.1007/s40846-016-0108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0108-1

Keywords

Navigation