Skip to main content
Log in

A new theory for anomalous diffusion with a bimodal flux distribution

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper deals with a new governing equation for anomalous diffusion encompassing a large spectrum of phenomena with particular attention on delaying processes. The analysis starts with a discrete approach and a law of evolution introducing a partial retention of the diffusing particles at each time step. The resulting differential equation assuming that the concentration function belongs to class C3 is a fourth-order differential equation. To fit this result into the framework of a new theory, a bi-modal flux distribution for the diffusion process associated with two energy states is proposed. The first energy state is related to the set of particles flowing according to the Fick’s law and the complementary set follows a new law. Two key parameters are introduced, namely, a parameter β indicating the fraction of the particles in the principal energy state and a parameter R controlling the effect of the secondary flux. Some examples are presented characterizing different types of phenomena as function of the relative values of β and R. The necessary conditions for the retention behavior are discussed for some particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Islam MA (2004) Einstein-Smulochowski diffusion equation: a discussion. Phys Scripta 70((2–3)):120–125

    Article  MATH  Google Scholar 

  2. Philibert J (2006) One and half century of diffusion: Fick, Einstein, before and beyond, diffusion-fundamentals.org. 4 6.1–6.19

  3. Brandani S, Jama M, Ruthven D (2000) Diffusion, self-diffusion and counter-diffusion of benzene and p-xylene in silicalite. Microporous Mesopor Mat 35–36:283–300

    Article  Google Scholar 

  4. Crank J, Henry ME (1949) Diffusion in media with variable properties. Part I. The effect of a variable diffusion coefficient on the rates of absorption and desorption. Trans Faraday Soc 45:636–650

    Article  Google Scholar 

  5. Crank J, Henry ME (1949) Diffusion in media with variable properties. Part II. The effect of a variable diffusion coefficient on the concentration-distance relationship in the non-steady state. Trans Faraday Soc 45:1119–1130

    Article  Google Scholar 

  6. Hall LD (1953) An analytical method of calculating diffusion coefficients. J Chem Phys 21(1):87–89

    Article  Google Scholar 

  7. Küntz M, Lavallée P (2004) Anomalous diffusion is the rule in concentration-dependent diffusion processes. J Phys D Appl Phys 37(1):L5–L8

    Article  Google Scholar 

  8. Vanaparthy SH, Barthe C, Meiburg E (2006) Density-driven instabilities in capillary tubes: influence of a variable diffusion coefficient, Phys. Fluids 18 (n.4): 048101-1

    Google Scholar 

  9. Atsumi H (2002) Hydrogen bulk retention in graphite and kinetics of diffusion. J Nucl Mater 307–311:1466–1470

    Article  Google Scholar 

  10. Atsumi H, Tanabe T, Shikama T (2011) Hydrogen behavior in carbon and graphite before and after neutron irradiation—trapping, diffusion and the simulation of bulk retention. J Nucl Mater 417:633–636

    Article  Google Scholar 

  11. D`Angelo MV, Fontana E, Chertcoff R, Rosen M (2003) Retention phenomena in non-Newtonian fluids flow. Physics A 327:44–48

    Article  Google Scholar 

  12. Deleersnijder E, Beckers J-M, Delhez EJM (2006) The residence time of setting in the surface mixed layer. Environ Fluid Mech 6:25–42

    Article  Google Scholar 

  13. Huang J-C, Madey R (1982) Effect of liquid-phase diffusion resistance on retention time in gas-liquid chromatography. Anal Chem 54(2):326–328

    Article  Google Scholar 

  14. Kindler K, Khalili A, Stocker R (2010) Diffusion-limited retention of porous particles at density interfaces. Proc Natl Acad Sci USA 107:22163–22168

    Article  Google Scholar 

  15. Ferreira JA, Branco JR, Silva P (2010) Non-Fickian delay reaction–diffusion equations: theoretical and numerical study. Appl Numer Math 60(5):531–549

    Article  MathSciNet  MATH  Google Scholar 

  16. Fort J, Méndez V (2002) Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment. Rep Prog Phys 65:895–954

    Article  MATH  Google Scholar 

  17. Jianhong W, Xingfu Z (2001) Traveling waves fronts of reaction-diffusion systems with delay. J Dyn Differ Equ 13(3):651–686

    Article  MATH  Google Scholar 

  18. Sen S, Ghosh P, Riaz SS, Ray DS (2009) Time-delay-induced instabilities in reaction-diffusion system. Phys Rev E 80:046212

    Article  Google Scholar 

  19. Zanette TH (1999) Statistical-thermodynamical foundations of anomalous diffusion. Braz J Phys 29(1):108–124

    Article  Google Scholar 

  20. Cohen DS, Murray JM (1981) A generalized model for growth and dispersal in a population. J Math Biol 12:237–249

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurzynski M, Palacz K, Chełminiak P (1998) Time course of reactions controlled and gated by intramolecular dynamics of proteins: Predictions of the model of random walk on fractal lattices. Proc Natl Acad Sci USA 95((n. 20)):11685–11690 Biophysics

    Article  Google Scholar 

  22. Mainardi F (1996) The fundamental solutions for fractional diffusive-wave equation. Appl Math Lett 9((n. 6)):23–28

    Article  MathSciNet  MATH  Google Scholar 

  23. Scherer R, Kalla SL, Boyadjiev L, Al-Saqabi B (2008) Numerical treatment of fractional heat equations. Appl Numer Math 58(8):1212–1223

    Article  MathSciNet  MATH  Google Scholar 

  24. Bevilacqua L, Galeão ACNR, Costa FP (2011) On the significance of higher order terms in diffusion processes. J Braz Soc Mech Sci 34(2):166–175

    Article  Google Scholar 

  25. Bevilacqua L, Galeão ACNR, Costa FP (2011) A new analytical formulation of retention effects on particle diffusion processes. An Acad Bras Cienc 83(4):1443–1464

    Article  Google Scholar 

  26. Osborne WA, Jackson LC (1914) Counter diffusion in aqueous solution. Biochem J 8(3):246–249

    Google Scholar 

  27. Schaefer KE (1974) Present status of underwater medicine. Review of some challenging problems. Cell Mol Life Sci 30(3):217–221

    Article  MathSciNet  Google Scholar 

  28. Broadbridge P (2008) Entropy diagnostics for fourth order partial differential equations in conservation form. Entropy 10:365–379

    Article  MathSciNet  MATH  Google Scholar 

  29. Simas (2012) Resolução Numérica para o Problema de Difusão com Retenção. MSc Thesis, LNCC/MCT

Download references

Acknowledgments

The results presented in this paper could not be achieved without the support of the National Research Council (CNPq) through the Research Fellowship Program, and the Research Project : 480865/2009-4. We are also indebted with the State of Rio de Janeiro Foundation, Research project: E-26/101.728/2010, for the scholarship granted to one of the authors of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bevilacqua.

Additional information

Technical Editor: Fernando Alves Rochinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevilacqua, L., Galeão, A.C.N.R., Simas, J.G. et al. A new theory for anomalous diffusion with a bimodal flux distribution. J Braz. Soc. Mech. Sci. Eng. 35, 431–440 (2013). https://doi.org/10.1007/s40430-013-0041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0041-y

Keywords

Navigation