Skip to main content
Log in

A new diagram of Earth’s global energy budget

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

A new global mean energy budget diagram is offered for discussion and further examination. The main motivation for creating this figure was the observation that a quasi-discrete flux quantity structure seems to appear behind the best published energy budget data. This structure underneath the observed global energy flow system might represent an idealized, hypothetic normal (steady) state onto which the actual climatic regimes and their changes can be projected. The unit of the all-sky structure is the value of the flux element called longwave cloud radiative effect (LWCRE), termed also the greenhouse effect of clouds; under prevailing average conditions, it turns out to be numerically equal to the all-sky surface transmitted irradiance, ST(all). There is also a clear-sky structure, as reported in earlier studies, where the unit of measure is one ST(clear). Three important features are independent of the discrete units: (a) the energies at the surface are equal to the total energy at top-of-atmosphere plus one LWCRE; (b) the energies in the atmosphere are equal to the energy at the surface plus two LWCRE; (c) the shortwave (SW) radiation absorbed by the surface is equal to the longwave (LW) energy in the all-sky greenhouse effect. The aim of our study is to present the system as it reveals itself in the data; theoretical explanation is out of our recent scope.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ASR:

Absorbed (=incoming minus reflected) solar radiation

β:

Cloud area fraction

CERES:

Clouds and the Earth’s radiant energy system

EBAF:

Energy balanced and filled

f :

Transfer function, f = OLR/SU, also called planetary emissivity

g :

Greenhouse function, g = G/SU = 1 − f

G:

Greenhouse effect, G = SU − OLR

GEWEX:

Global energy and water exchanges project

ISCCP:

International satellite cloud climatology project

LA :

Longwave radiation absorbed in the atmosphere

LD :

Downward emitted atmospheric longwave radiation at the surface, also termed DLR or ‘back-radiation’

LU :

Upward emitted atmospheric longwave radiation at TOA, also termed ‘thermal cooling to space’

LH:

Latent heat (evapotranspiration)

LWCRE:

Longwave cloud radiative effect

NET:

Surface net longwave radiative cooling, NET = SU − LD(all)

OLR:

Outgoing longwave radiation

SA :

Shortwave radiation absorbed in the atmosphere

SH:

Sensible heat (thermals, convection)

SRF:

Surface

ST :

Surface transmitted irradiance

SU :

Surface upward longwave radiation

TA :

Longwave transmittance, TA = ST/SU

TOA:

Top of the atmosphere

References

  • Allan R (2006) Variability in clear-sky longwave radiative cooling of the atmosphere. J Geophys Res 111:D22105. doi:10.1029/2006JD007304

    Article  Google Scholar 

  • Allan R, Liu C, Loeb N, Palmer M, Roberts M, Smith D, Vidale P-L (2014) Changes in global net radiative imbalance 1985–2012. Geophys Res Lett 41(15):5588–5597. doi:10.1002/2014GL060962

    Article  Google Scholar 

  • Bengtsson L (2012) Foreword: International Space Science Institute (ISSI) workshop on observing and modeling earth’s energy flows. Surv Geophys 33:333–336. doi:10.1007/s10712-012-9194-y

    Article  Google Scholar 

  • Bengtsson L (2014) Foreword: International Space Science Institute (ISSI) workshop on the earth’s hydrological cycle. Surv Geophys 35:485–488. doi:10.1007/s10712-013-9265-8

    Article  Google Scholar 

  • Charlock TP, Ramanathan V (1985) The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J Atmos Sci 42:1408–1429

    Article  Google Scholar 

  • Coakley JA, Baldwin DG (1984) Towards the objective analysis of clouds from satellite imagery data. J Clim Appl Meteorol 23:1065–1099

    Article  Google Scholar 

  • Costa S, Shine K (2012) Outgoing longwave radiation due to directly transmitted surface emission. J Atmos Sci 69:1865–1870. doi:10.1175/JAS-D-11-0248.1

    Article  Google Scholar 

  • Goody RM, Yung YL (1989) Atmospheric radiation: theoretical basis, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Green JSA (1967) Division of radiative streams into internal transfer and cooling to space. Q J R Meteorol Soc 93:371–372

    Article  Google Scholar 

  • Hartmann DL, Tank AMGK, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM, IPCC (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Inamdar A, Ramanathan V, Loeb N (2004) Satellite observations of the water vapor greenhouse effect and column longwave cooling rates. J Geophys Res 109:D06104. doi:10.1029/2003JD003980

    Article  Google Scholar 

  • Kiehl J, Trenberth K (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78:197–208

    Article  Google Scholar 

  • L’Ecuyer T et al (2015) The observed state of the energy budget in the early 21st century. J Clim. doi:10.1175/JCLI-D-14-00556.1

    Google Scholar 

  • Miskolczi F (2007) Greenhouse effect in semi-transparent planetary atmospheres. Idojaras Q J Hung Meteorol Serv 111:1-40. http://owww.met.hu/idojaras/IDOJARAS_vol111_No1_01.pdf

  • Miskolczi F, Mlynczak M (2004) The greenhouse effect and the spectral decomposition of the clear-sky terrestrial radiation. Idojaras Q J Hung Meteorol Serv 108:209-251. http://owww.met.hu/idojaras/IDOJARAS_vol108_No4_01.pdf

  • NASA (2014) NASA Langley Research Center energy budget poster, 26 June 2014 edition. http://science-edu.larc.nasa.gov/energy_budget/pdf/ERB_Litho_v2014.06.26.pdf

  • Ramanathan V (1987) The role of earth radiation budget studies in climate and general circulation research. J Geophys Res Atmos 92:4075–4095

    Article  Google Scholar 

  • Ramanathan V, Inamdar A (2006) The radiative forcing due to clouds and water vapor. In: Kiehl JT, Ramanathan V (eds) Frontiers of climate modeling. Cambridge University Press, Cambridge (chapter 5)

    Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud radiative forcing and climate: results from the Earth Radiation Budget Experiment. Science 243:57–63

    Article  Google Scholar 

  • Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342:758–761

    Article  Google Scholar 

  • Rossow W, Schiffer A (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287

    Article  Google Scholar 

  • Stackhouse PW Jr, Gupta SK, Cox SJ, Zhang T, Mikovitz JC, Hinkelman LM (2011) The NASA/GEWEX surface radiation budget release 3.0, 24.5-year dataset. GEWEX News 21(1):10–12

    Google Scholar 

  • Stephens G, Greenwald T (1991) The Earth’s radiation budget and its relation to atmospheric hydrology 2. Observation of cloud effects. J Geophys Res 96:15325–15340

    Article  Google Scholar 

  • Stephens G, L’Ecuyer T (2015) The Earth’s energy balance. J Atmos Res. doi:10.1016/j.atmosres.2015.06.024

    Google Scholar 

  • Stephens GL, Slingo A, Webb M, Minnett P, Daum P, Kleinman L, Wittmeyer I, Randall D (1994) Observations of the Earth’s Radiation Budget in relation to atmospheric hydrology. Part IV: atmospheric column radiative cooling over the world’s oceans. J Geophys Res 99(D9):18585–18604

    Article  Google Scholar 

  • Stephens GL, Li J, Wild M, Clayson C, Loeb N, Kato S, L’Ecuyer T, Stackhouse W, Lebsock M, Andrews T (2012) An update on Earth’s energy balance in light of the latest observations. Nat Geosci 5:691–696. doi:10.1038/ngeo1580

    Article  Google Scholar 

  • Stevens B, Schwartz SE (2012) Observing and modeling Earth’s energy flows. Surv Geophys 33:779–816. doi:10.1007/s10712-012-9184-0

    Article  Google Scholar 

  • Stevens B et al. (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5(2):146–172. doi:10.1002/jame.20015

    Article  Google Scholar 

  • Trenberth K, Fasullo J (2012) Tracking Earth’s energy: from El Nino to global warming. Surv Geophys 33:413–426. doi:10.1007/s10712-011-9150-2

    Article  Google Scholar 

  • Trenberth K, Fasullo J, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323

    Article  Google Scholar 

  • Wild M, Folini D, Schär C, Loeb N, Dutton E, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134. doi:10.1007/s00382-012-1569-8

    Article  Google Scholar 

  • Wild M, Folini D, Hakuba M, Schär C, Seneviratne S, Kato S, Rutan D, Ammann C, Wood E, König-Langlo G (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44:3393–3429. doi:10.1007/s00382-014-2430-z

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Hungarian Academy of Sciences, contract No. 17/2010, 29.543/2010. The Geodetic and Geophysical Research Institute, Sopron, is highly appreciated for adopting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklos Zagoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagoni, M. A new diagram of Earth’s global energy budget. Acta Geod Geophys 51, 481–492 (2016). https://doi.org/10.1007/s40328-015-0138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-015-0138-0

Keywords

Navigation