Skip to main content
Log in

On Roto-Translatory Motion: Reductions and Radial Intermediaries

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The roto-translational dynamics of an axial-symmetric rigid body is discussed in a central gravitational field. The six-degree-of-freedom Hamiltonian problem is formulated as a perturbation of the Kepler motion and torque-free rotation. A chain of canonical transformations is used to reduce the problem. First, the elimination of the nodes reduces the problem to a system of four degrees of freedom. Then, the elimination of the parallax simplifies the resulting Hamiltonian, which is shaped as a radial intermediary plus a remainder. Some features of this integrable intermediary are pointed out. The normalized first order system in closed form is also given, thus completing the solution. Finally the full reduction of the radial intermediary is constructed using the Hamilton-Jacobi equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TOUMA, J. and WISDOM, J. “Evolution of the Earth-Moon System,” The Astronomical Journal, Vol. 108, 1994, pp. 1943–1961.

    Article  Google Scholar 

  2. GARRICK-BETHELL, I., WISDOM, J., and ZUBER, M. T. “Evidence for a Past High-Eccentricity Lunar Orbit,” Science, Vol 313, 2006, pp. 652–655.

    Article  MATH  MathSciNet  Google Scholar 

  3. BENETTIN, G., GUZZO, M. and MARINI, V. “Adiabatic Chaos in the Spin-Orbit Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 101, No. 1, 2008, pp. 203-224.

    Article  MATH  MathSciNet  Google Scholar 

  4. KOPEIKIN, S. M. et al., “Prospects in the Orbital and Rotational Dynamics of the Moon with the Advent of Sub-Centimeter Lunar Laser Ranging,” Advances in Space Research, Vol. 42, No. 8, 2008, pp. 1378–1390.

    Article  Google Scholar 

  5. SCHEERES, D. J. “Stability of the Planar Full 2-body Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 104, No. 1–2, 2009, pp. 103–128.

    Article  MATH  MathSciNet  Google Scholar 

  6. GETINO, J., ESCAPA, A., and MIGUEL, D. “General Theory of the Rotation of the Non-Rigid Earth at the Second Order. I. The Rigid Model in Andoyer Variables,” The Astronomical Journal, Vol. 139, 2010, pp. 1916–1934.

    Article  Google Scholar 

  7. DANBY, J. M. A. Fundamentals of Celestial Mechanics, 2nd ed., Willmann - Bell, Inc., Richmond, 1992, p. 100 ff.

  8. DEPRIT, A. “Elimination of the Nodes in Problems of N Bodies,” Celestial Mechanics, Vol. 30, No. 2, 1983, pp. 181–195.

    Article  MATH  MathSciNet  Google Scholar 

  9. FERRÁNDIZ, J. M., SANSATURIO, M. E. “Elimination of the Nodes when the Satellite is a Non Spherical Rigid Body,” Celestial Mechanics and Dynamical Astronomy, Vol. 46, No. 4, 1989, pp. 307–320.

    Article  MATH  Google Scholar 

  10. FERRÁNDIZ, J. M., SANSATURIO, M. E., CABALLERO, R. “On the Roto-Translatory Motion of a Satellite of an Oblate Primary,” Celestial Mechanics and Dynamical Astronomy, Vol. 57, No. 1–2, 1993, pp. 189–202.

    Article  MATH  Google Scholar 

  11. KINOSHITA, H. “First-Order Perturbations of the Two Finite Body Problem,” Publications of the Astronomical Society of Japan, Vol. 24, 1972, pp. 423–457.

    MathSciNet  Google Scholar 

  12. HORI, G. I. “Theory of General Perturbation with Unspecied Canonical Variable,” Publications of the Astronomical Society of Japan, Vol. 18, No. 4, 1966, pp. 287–296.

    Google Scholar 

  13. DEPRIT, A. “Canonical Transformations Depending on a Small Parameter,” Celestial Mechanics, Vol. 1, No. 1, 1969, pp. 12–30.

    Article  MATH  MathSciNet  Google Scholar 

  14. DEPRIT, A. “The Elimination of the Parallax in Satellite Theory,” Celestial Mechanics, Vol. 24, No. 2, 1981, pp. 111–153.

    Article  MATH  MathSciNet  Google Scholar 

  15. ALFRIEND, K. T. and COFFEY, S. L. “Elimination of the Perigee in the Satellite Problem,” Celestial Mechanics, Vol. 32, 1984, pp. 163–172.

    Article  MATH  Google Scholar 

  16. DEPRIT, A. “Delaunay Normalisations,” Celestial Mechanics, Vol. 26, No. 1, 1982, pp. 9–21.

    Article  MathSciNet  Google Scholar 

  17. ANDOYER, M. H. Cours de Mécanique Céleste, t. 1, Gauthier-Villars et cie, Paris, 1923, p. 57.

  18. DEPRIT, A., and FERRER, S. “Simplifications in the Theory of Artificial Satellites,” The Journal of the Astronautical Sciences, Vol. 37, No. 2, 1989, pp. 451–463.

    MathSciNet  Google Scholar 

  19. COPPOLA, V. T., and PALACIAN, J. F. “Elimination of the Latitude in Artificial Satellite Theory,” The Journal of the Astronautical Sciences, Vol. 42, No. 1, 1994, pp. 27–34.

    Google Scholar 

  20. COFFEY, S. L., and DEPRIT, A. “Third Order Solution for Artificial Satellites,” Journal of Guidance, Control, and Dynamics, Vol. 5, 1982, pp. 366–371.

    Article  MATH  MathSciNet  Google Scholar 

  21. COFFEY, S. L., DEPRIT, A., and MILLER, B. R. “The Critical Inclination in Artificial Satellite Theory,” Celestial Mechanics, Vol. 39, No. 4, 1986, pp. 365–406.

    Article  MATH  MathSciNet  Google Scholar 

  22. HEALY, L. M. “The Main Problem in Satellite Theory Revisited,” Celestial Mechanics and Dynamical Astronomy, Vol. 76, No. 2, 2000, pp. 79–120.

    Article  MATH  MathSciNet  Google Scholar 

  23. COFFEY, S. L., DEPRIT, A., and DEPRIT, E. “Frozen Orbits for Satellites Close to an Earth-Like Planet,” Celestial Mechanics and Dynamical Astronomy, Vol. 59, No. 1, 1994, pp. 37–72.

    Article  MATH  MathSciNet  Google Scholar 

  24. ABAD, A., SAN-JUAN, J. F., and GAVÍN, A. “Short Term Evolution of Artificial Satellites,” Celestial Mechanics and Dynamical Astronomy, Vol. 79, No. 4, 2001, pp. 277–296.

    Article  MATH  Google Scholar 

  25. PALACIAN, J. F. “Dynamics of a Satellite Orbiting a Planet with an Inhomogeneous Gravitational Field,” Celestial Mechanics and Dynamical Astronomy, Vol. 98, No. 4, 2007, pp. 219–249.

    Article  MATH  MathSciNet  Google Scholar 

  26. WILSON, C. The Hill-Brown Theory of the Moons Motion, Springer, 2010, 322 p.

  27. VINTI, J. “Theory of an Accurate Intermediary Orbit of an Artificial Satellite,” Journal of Research National Bureau of Standards, Vol. 65B, 1959, pp. 169–201.

    Article  MathSciNet  Google Scholar 

  28. AKSNES, K. “On the Dynamical Theory of a Near-Earth Satellite,” Astrophysica Norvegica, Vol. X, No. 4, 1965, pp. 69–77.

    Google Scholar 

  29. CID, R, and LAHULLA, J. F. “Perturbaciones de Corto Periodo en el Movimiento de un Satélite Artificial en Función de las Variables de Hill,” Monografías de la Real Academia de Ciencias de Zaragoza, Vol. 24, 1969, pp. 159–165.

    Google Scholar 

  30. GARFINKEL, B. and ASKNES, K. “Spherical Coordinate Intermediaries for an Artificial Satellite,” The Astronomical Journal, Vol. 75, 1970, pp. 85–91.

    Article  MathSciNet  Google Scholar 

  31. ARRIBAS, M. Sobre la dinámica de actitud de satélites artificiales, Ph.D. Dissertation, Universidad de Zaragoza, 1989, pp. 149.

  32. CHERNOUS’KO, F. L. “On the Motion of a Satellite about its Center of Mass Under the Action of Gravitational Moments,” Prikladnaya Mathematic Mechanica, Vol. 27, 1963, pp. 474 - 483.

    MathSciNet  Google Scholar 

  33. LARA, M., FUKUSHIMA, T., and FERRER, S. “First-Order Rotation Solution of an Oblate Rigid Body under the Torque of a Perturber in Circular Orbit,” Astronomy and Astrophysics, Vol. 519, A1, 2010, doi: 10.1051/0004-6361/200913880.

    Article  Google Scholar 

  34. FERRER, S., and LARA, M. “Families of Canonical Transformations from a General Form of the Hamilton-Jacobi Equation,” Journal of Geometric Mechanics, Vol. 2, 2010, pp. 223-241.

    Article  MATH  MathSciNet  Google Scholar 

  35. FERRER, S., and LARA, M. “Integration of the Rotation of an Earth-Like Body as a Perturbed Spherical Rotor,” The Astronomical Journal, Vol. 139, 2010, pp. 1899–1908.

    Article  Google Scholar 

  36. LARA M., FUKUSHIMA, T., and FERRER, S. “Ceres Rotation Solution Under the Gravitational Torque of the Sun,” Monthly Notices of the Royal Astronomical Society, Vol. 415, 2011, pp. 461–469.

    Article  Google Scholar 

  37. ARNOLD, V. I., KOZLOV, V. V. and NEISHTADT, A. I. (Eds), Mathematical aspects of classical and celestial mechanics, in Encyclopaedia of Mahematical Sciences, Dynamical Systems III, Springer-Verlag Berlin 1993.

  38. DEPRIT, A. and FERRER, S. “Note on Cid’s Radial Intermediary and the Method of Averaging,” Celestial Mechanics, Vol. 40, 1987, pp. 335–343.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Ferrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, S., Lara, M. On Roto-Translatory Motion: Reductions and Radial Intermediaries. J of Astronaut Sci 59, 22–40 (2012). https://doi.org/10.1007/s40295-013-0004-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-013-0004-7

Keywords

Navigation