Skip to main content
Log in

Testing the Concept of the Interatomic Status of the NFE2L2/AP1 Pathway as a Systemic Biomarker for Examination Stress

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background and Objectives

Oxidative status-based interactomic profiling is a promising approach for fundamental integrative cell biology, diagnostics, and therapy. However, this approach has been neither utilized as a method nor tested as a tool. Thus, we aimed (1) to develop an oxidative status pathway state assessment-based analytical procedure relying on NFE2L2/AP1 pathway evaluation, and (2) to preliminarily assess its responsiveness, performance and diagnostic properties when applied to deciphering stress conditions of the academic examination period and academic term. These conditions were chosen as those representing a common model of mild, everyday-life stressors causing shifts in oxidative status.

Methods

To meet the aim of the study, we performed a repetitive-measurements study collating gene expression of NFE2L2/AP1 pathway targets and controllers under the two stress conditions using semi-quantitative reverse transcription-polymerase chain reaction.

Results

Surprisingly, even with some sensitivity limitations of the methods employed, a pathway state analysis approach based on a multiple target-to-controller ratio calculation was highly responsive and yielded very high receiver operating characteristics in deciphering the model stress conditions.

Conclusion

Although further testing of the approach is required, the interactomic pathway activation assaying concept was preliminarily experimentally proven to be a highly promising clinical diagnostic tool that may easily be adapted for current tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol. 2006;38:317–32.

    Article  CAS  PubMed  Google Scholar 

  2. Zolotukhin P, Kozlova Y, Dovzhik A, Kovalenko K, Kutsyn K, Aleksandrova A, Shkurat T. Oxidative status interactome map: towards novel approaches in experiment planning, data analysis, diagnostics and therapy. Mol Biosyst. 2013;9:2085–96.

    Article  CAS  PubMed  Google Scholar 

  3. Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999;39:67–101.

    Article  CAS  PubMed  Google Scholar 

  4. Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Reuter S, Gupta S, Chaturvedi M, Aggarwal B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jimenez-Del-Rio M, Velez-Pardo C. The bad, the good, and the ugly about oxidative stress. Oxid Med Cell Longev. 2012;2012:163913.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sugamura K, Keaney J Jr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med. 2011;51:978–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kaneto H, Katakami N, Matsuhisa M, Matsuoka T. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm. 2010;2010:1–11.

    Article  Google Scholar 

  9. Touyz MR. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44:248–52.

    Article  CAS  PubMed  Google Scholar 

  10. McCance DR, Holmes VA, Maresh MJ, Patterson CC, Walker JD, Pearson DW, Young IS, DAPIT Study Group. Vitamins C and E for prevention of pre-eclampsia in women with type 1 diabetes (DAPIT): a randomised placebo-controlled trial. Lancet. 2010;376:259–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gelderman KA, Hultqvist M, Olsson LM, Bauer K, Pizzolla A, Olofsson P, Holmdahl R. Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal. 2007;9:1541–67.

    Article  CAS  PubMed  Google Scholar 

  12. Coaccioli S, Panaccione A, Biondi R, Sabatini C, Landucci P, Del Giorno R, Fantera M, Monno Mondo A, Di Cato L, Paladini A, Fatati G, Puxeddu A. Clin Ther. 2009;160:467–72.

    CAS  Google Scholar 

  13. Perl A. Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat Rev Rheumatol. 2013;9:674–86.

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez C, Lachaize C, Janody F, Bellon B, Röder L, Euzenat J, Rechenmann F, Jacq B. Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database. Nucl Acids Res. 1999;27:89–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ross JS, Hatzis C, Symmans WF, Pusztai L, Hortobagy GN. Commercialized multigene predictors of clinical outcome for breast cancer. Oncologist. 2008;13:477–93.

    Article  PubMed  Google Scholar 

  16. Bosch JA, de Geus EE, Ring C, Nieuw AV. Academic examinations and immunity: academic stress or examination stress? Psychosom Med. 1999;66:625–6.

    Google Scholar 

  17. Sivonová M, Zitnanová I, Hlincíková L, Skodácek I, Trebatická J, Duracková Z. Oxidative stress in university students during examinations. Stress. 2004;7:183–8.

    Article  PubMed  Google Scholar 

  18. Nakhaee A, Shahabizadeh F, Erfani M. Protein and lipid oxidative damage in healthy students during and after exam stress. Physiol Behav. 2013;118:118–21.

    Article  CAS  PubMed  Google Scholar 

  19. Borella P, Bargellini A, Rovesti S, Pinelli M, Vivoli R, Solfrini V, Vivoli G. Emotional stability, anxiety, and natural killer activity under examination stress. Psychoneuroendocrinology. 1999;24:613–27.

    Article  CAS  PubMed  Google Scholar 

  20. Höglund CO, Axén J, Kemi C. Changes in immune regulation in response to examination stress in atopic and healthy individuals. Clin Exp Allergy. 2006;36:982–92.

    Article  PubMed  Google Scholar 

  21. Demidenko E. Mixed models: theory and applications. New York: Wiley; 2004.

    Book  Google Scholar 

  22. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  PubMed  Google Scholar 

  23. Jialiang L, Shuangge M. Survival analysis in medicine and genetics. Boca Raton: Chapman & Hall/CRC Biostatistics Series; 2013.

    Google Scholar 

  24. Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA. 1996;93:14960–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Iwasaki K, Mackenzie EL, Hailemariam K, Sakamoto K, Tsuji Y. Hemin-mediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cells. Mol Cell Biol. 2006;26:2845–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lou H, Du S, Ji Q, Stolz A. Induction of AKR1C2 by phase II inducers: identification of a distal consensus antioxidant response element regulated by NRF2. Mol Pharmacol. 2006;69:1662–72.

    Article  CAS  PubMed  Google Scholar 

  27. Marrot L, Jones C, Perez P, Meunier JR. The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis. Pigment Cell Melanoma Res. 2008;21:79–88.

    Article  CAS  PubMed  Google Scholar 

  28. Chepelev NL, Bennitz JD, Huang T, McBride S, Willmore WG. The Nrf1 CNC-bZIP protein is regulated by the proteasome and activated by hypoxia. PLoS One. 2011;6:e29167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lee OH, Jain AK, Papusha V, Jaiswal AK. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. J Biol Chem. 2007;282:36412–20.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshioka K, Deng T, Cavigelli M, Karin M. Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc Natl Acad Sci USA. 1995;92:4972–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kim YC, Yamaguchi Y, Kondo N. Thioredoxin-dependent redox regulation of the antioxidant responsive element (ARE) in electrophile response. Oncogene. 2003;22:1860–5.

    Article  CAS  PubMed  Google Scholar 

  32. Dovzhik AD, Zolotukhin PV, et al. Assessing the regulation dependencies of thioredoxin 1 transcript variants by means of interactomic dynamic-with-induction profiling approach. Zhivye biokosnye sist (In press).

  33. Tanigawa S, Fujii M, Hou DX. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med. 2007;42:1690–703.

    Article  CAS  PubMed  Google Scholar 

  34. Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab. 2013;17:73–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No competing financial or other interests exist. This study was supported by the federal targeted program ‘Scientific and Educational Research Staff of Innovative Russia’ of the Ministry of Education and Science of the Russian Federation, grant no. 14.132.21.1315, and by the Russian President’s council on grants for young researchers and leading scientific centers, project no. 194.2012.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr V. Zolotukhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolotukhin, P.V., Dovzhik, A.D., Lebedeva, U.A. et al. Testing the Concept of the Interatomic Status of the NFE2L2/AP1 Pathway as a Systemic Biomarker for Examination Stress. Mol Diagn Ther 18, 355–369 (2014). https://doi.org/10.1007/s40291-014-0088-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-014-0088-1

Keywords

Navigation