Skip to main content
Log in

Preclinical Imaging: an Essential Ally in Modern Biosciences

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Translational research is changing the practice of modern medicine and the way in which health problems are approached and solved. The use of small-animal models in basic and preclinical sciences is a major keystone for these kinds of research and development strategies, representing a bridge between discoveries at the molecular level and clinical implementation in diagnostics and/or therapeutics. The development of high-resolution in vivo imaging technologies provides a unique opportunity for studying disease in real time, in a quantitative way, at the molecular level, along with the ability to repeatedly and non-invasively monitor disease progression or response to treatment. The greatest advantages of preclinical imaging techniques include the reduction of biological variability and the opportunity to acquire, in continuity, an impressive amount of unique information (without interfering with the biological process under study) in distinct forms, repeated or modulated as needed, along with the substantial reduction in the number of animals required for a particular study, fully complying with 3R (Replacement, Reduction and Refinement) policies. The most suitable modalities for small-animal in vivo imaging applications are based on nuclear medicine techniques (essentially, positron emission tomography [PET] and single photon emission computed tomography [SPECT]), optical imaging (OI), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy imaging (MRSI), and ultrasound. Each modality has intrinsic advantages and limitations. More recently, aiming to overcome the inherent limitations of each imaging modality, multimodality devices designed to provide complementary information upon the pathophysiological process under study have gained popularity. The combination of high-resolution modalities, like micro-CT or micro-MRI, with highly sensitive techniques providing functional information, such as micro-PET or micro-SPECT, will continue to broaden the horizons of research in such key areas as infection, oncology, cardiology, and neurology, contributing not only to the understanding of the underlying mechanisms of disease, but also providing efficient and unique tools for evaluating new chemical entities and candidate drugs. The added value of small-animal imaging techniques has driven their increasing use by pharmaceutical companies, contract research organizations, and research institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Milne CP, Kaitin KI. Translational medicine: an engine of change for bringing new technology to community health. Sci Transl Med. 2009 Nov 4;1(5):5cm5.

  2. Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer. 2002;38(16):2173–88.

    Article  PubMed  Google Scholar 

  3. Franc BL, Acton PD, Mari C, Hasegawa BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008;49(10):1651–63.

    Article  PubMed  Google Scholar 

  4. Allport JR, Weissleder R. In vivo imaging of gene and cell therapies. Exp Hematol. 2001;29(11):1237–46.

    Article  CAS  PubMed  Google Scholar 

  5. Pomper MG, Lee JS. Small animal imaging in drug development. Curr Pharm Des. 2005;11(25):3247–72.

    Article  CAS  PubMed  Google Scholar 

  6. Deng WP, Wu CC, Lee CC, Yang WK, Wang HE, Liu RS, et al. Serial in vivo imaging of the lung metastases model and gene therapy using HSV1-tk and ganciclovir. J Nucl Med. 2006;47(5):877–84.

    CAS  PubMed  Google Scholar 

  7. Turetschek K, Floyd E, Helbich T, Roberts TP, Shames DM, Wendland MF, et al. MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging. 2001;14(3):237–42.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng Z, Mahmood A, Li H, Davison A, Jones AG. [99mTcOAADT]-(CH2)2-NEt2: a potential small-molecule single-photon emission computed tomography probe for imaging metastatic melanoma. Cancer Res. 2005;65(12):4979–86.

    Article  CAS  PubMed  Google Scholar 

  9. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5 Suppl):1S–93S.

    CAS  PubMed  Google Scholar 

  10. Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49(Suppl 2):64S–80S.

    Article  CAS  PubMed  Google Scholar 

  11. Blasberg R. PET imaging of gene expression. Eur J Cancer. 2002;38(16):2137–46.

    Article  CAS  PubMed  Google Scholar 

  12. Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia. 2000;2(1–2):118–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Orlova A, Nilsson FY, Wikman M, Widstrom C, Stahl S, Carlsson J, et al. Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med. 2006;47(3):512–9.

    CAS  PubMed  Google Scholar 

  14. Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005;11(11):4022–8.

    Article  CAS  PubMed  Google Scholar 

  15. Haubner RH, Wester HJ, Weber WA, Schwaiger M. Radiotracer-based strategies to image angiogenesis. Q J Nucl Med. 2003;47(3):189–99.

    CAS  PubMed  Google Scholar 

  16. Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, et al. 99mTc-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin alphavbeta3 expression. Bioconjugate Chem. 2006;17(4):1069–76.

    Article  CAS  Google Scholar 

  17. Niu G, Chen X. PET imaging of angiogenesis. PET Clin. 2009;4(1):17–38.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Holland JP, Lewis JS, Dehdashti F. Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imag. 2009;53(2):193–200.

    CAS  Google Scholar 

  19. Madar I, Huang Y, Ravert H, Dalrymple SL, Davidson NE, Isaacs JT, et al. Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med. 2009;50(5):774–80.

    Article  CAS  PubMed  Google Scholar 

  20. Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R, et al. 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imag. 2004;31(4):469–74.

    Article  CAS  Google Scholar 

  21. Jaffer FA, Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ Res. 2004;94(4):433–45.

    Article  CAS  PubMed  Google Scholar 

  22. Lamb HJ, van der Meer RW, de Roos A, Bax JJ. Cardiovascular molecular MR imaging. Eur J Nucl Med Mol Imag. 2007;34(Suppl 1):S99–104.

    Article  CAS  Google Scholar 

  23. Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation. 2005;111(24):3255–60.

    Article  CAS  PubMed  Google Scholar 

  24. Khaw BA, Tekabe Y, Johnson LL. Imaging experimental atherosclerotic lesions in ApoE knockout mice: enhanced targeting with Z2D3-anti-DTPA bispecific antibody and 99mTc-labeled negatively charged polymers. J Nucl Med. 2006;47(5):868–76.

    CAS  PubMed  Google Scholar 

  25. Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation. 2003;108(25):3134–9.

    Article  CAS  PubMed  Google Scholar 

  26. Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation. 2004;109(21):2554–9.

    Article  PubMed  CAS  Google Scholar 

  27. Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol. 2003;30(8):889–95.

    Article  CAS  PubMed  Google Scholar 

  28. Lancelot S, Zimmer L. Small-animal positron emission tomography as a tool for neuropharmacology. Trend Pharmacol Sci. 2010;31(9):411–7.

    Article  CAS  Google Scholar 

  29. Zanzonico P. Noninvasive imaging for supporting basic research. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 3–16.

    Chapter  Google Scholar 

  30. Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivo small animal imaging: current status and future prospects. Med Phys. 2010;37(12):6421–42.

    Article  PubMed  Google Scholar 

  31. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219(2):316–33.

    Article  CAS  PubMed  Google Scholar 

  32. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.

    Article  CAS  PubMed  Google Scholar 

  33. Grassi R, Lagalla R, Rotondo A. Genomics, proteomics, MEMS and SAIF: which role for diagnostic imaging? La Radiologia medica. 2008;113(6):775–8.

    Article  CAS  PubMed  Google Scholar 

  34. Alberti C. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci. 2012;16(14):1925–33.

    CAS  PubMed  Google Scholar 

  35. Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50(22):R45–61.

    Article  CAS  PubMed  Google Scholar 

  36. Peterson TE, Shokouhi S. Advances in preclinical SPECT instrumentation. J Nucl Med. 2012;53(6):841–4.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W. Molecular SPECT imaging: an overview. Int J Mol Imaging. 2011;2011:796025.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Peterson TE, Furenlid LR. SPECT detectors: the Anger Camera and beyond. Phys Med Biol. 2011;56(17):R145–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kim H, Furenlid LR, Crawford MJ, Wilson DW, Barber HB, Peterson TE, et al. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys. 2006;33(2):465–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Nat Acad Sci USA. 2000;97(16):9226–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41(4):661–81.

    CAS  PubMed  Google Scholar 

  42. Kowalski J, Henze M, Schuhmacher J, Mäcke HR, Hofmann M, Haberkorn U. Evaluation of Positron Emission Tomography Imaging Using [68 Ga]-DOTA-D Phe1-Tyr3-Octreotide in Comparison to [111In]-DTPAOC SPECT. First Results in Patients with Neuroendocrine Tumors. Mol Imaging Biol. 2003;5(1):42–8.

    Article  PubMed  Google Scholar 

  43. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36(7):729–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Basu S, Urhan M, Rosenbaum J, Alavi A. PET and PET/CT in the management of thyroid cancer. Method Mol Biol. 2011;727:205–24.

    Article  Google Scholar 

  45. Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2(2):115–52.

    Article  PubMed  Google Scholar 

  46. Levin CS, Zaidi H. Current trends in preclinical PET system design. PET Clin. 2007;2(2):125–60.

    Article  Google Scholar 

  47. Yao R, Lecomte R, Crawford ES. Small-animal PET: what is it, and why do we need it? J Nucl Med Technol. 2012 Sep;40(3):157-65.

  48. Hutchins GD, Miller MA, Soon VC, Receveur T. Small animal PET imaging. ILAR J. 2008;49(1):54–65.

    Article  CAS  PubMed  Google Scholar 

  49. Lecomte R. Technology challenges in small animal PET imaging. Nucl Instrum Methods Phys Res A. 2004;527(1–2):157–65.

    Article  CAS  Google Scholar 

  50. Comley J. In vivo preclinical imaging: an essential tool in translational research. Drug Discovery World. 2011:58–71.

  51. Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34(2):151–61.

    Article  PubMed  Google Scholar 

  52. Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci. 1997;44(3):1167–71.

    Article  CAS  Google Scholar 

  53. Tsui BM, Kraitchman DL. Recent advances in small-animal cardiovascular imaging. J Nucl Med. 2009;50(5):667–70.

    Article  PubMed Central  PubMed  Google Scholar 

  54. de Kemp RA, Epstein FH, Catana C, Tsui BM, Ritman EL. Small-animal molecular imaging methods. J Nucl Med. 2010;1(51 Suppl 1):18S–32S.

    Article  CAS  Google Scholar 

  55. Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med. 1996;37(11):1832–6.

    CAS  PubMed  Google Scholar 

  56. Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 1999;40(7):1164–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44(3):781.

    Article  CAS  PubMed  Google Scholar 

  58. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46(3):455–63.

    PubMed  Google Scholar 

  59. Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med. 2005;46(7):1194–200.

    PubMed  Google Scholar 

  60. Vastenhouw B, Beekman F. Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med. 2007;48(3):487–93.

    PubMed  Google Scholar 

  61. Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proc Am Thorac Soc. 2005;2(6):533-6, 10-11.

  62. Henriksen G, Drzezga A. Imaging in neurology research II: PET imaging in CNS disorders. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 499–513.

    Chapter  Google Scholar 

  63. Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med. 1998;25(2):173–6.

    Article  CAS  PubMed  Google Scholar 

  64. Judenhofer MS, Wiehr S, Kukuk D, Fischer K, Pichler BJ. Guidelines for nuclear image analysis. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 379–86.

    Chapter  Google Scholar 

  65. Cavanaugh D, Johnson E, Price RE, Kurie J, Travis EL, Cody DD. In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging. 2004;3(1):55–62.

    Article  PubMed  Google Scholar 

  66. Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011;15(13):531–52.

    Article  CAS  Google Scholar 

  67. Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol. 2008;53(19):R319–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.

    Article  CAS  PubMed  Google Scholar 

  69. Pietsch H. CT contrast agents. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 141–9.

    Chapter  Google Scholar 

  70. Kalender WA, Deak P, Engelke K, Karolczak M. X-ray and X-ray CT. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 125–39.

    Chapter  Google Scholar 

  71. Dufort S, Sancey L, Wenk C, Josserand V, Coll JL. Optical small animal imaging in the drug discovery process. Biochim Biophys Acta. 2010;1798(12):2266–73.

    Article  CAS  PubMed  Google Scholar 

  72. Tremoleda JL, Khalil M, Gompels LL, Wylezinska-Arridge M, Vincent T, Gsell W. Imaging technologies for preclinical models of bone and joint disorders. EJNMMI Res. 2011;1(1):11.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Koba W, Kim K, Lipton ML, Jelicks L, Das B, Herbst L, et al. Imaging devices for use in small animals. Semin Nucl Med. 2011;41(3):151–65.

    Article  PubMed  Google Scholar 

  74. Jakob P. Small animal magnetic resonance imaging: basic principles, instrumentation and practical issues. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 151–64.

    Chapter  Google Scholar 

  75. Brockmann MA. Use of clinical MR scanners for small rodent imaging. Methods. 2007;43(1):1.

    Article  CAS  PubMed  Google Scholar 

  76. Leroy-Willig A, Geldwerth-Feniger G. Nuclear magnetic resonance imaging and spectroscopy. In: Ntziachristos V, Leroy-Willig A, Tavitian B, editors. Textbook of in vivo imaging in vertebrates. UK: Wiley; 2007. p. 1–56.

    Google Scholar 

  77. Weber WA, Kiessling F. Imaging in oncology research. In: Kiessling F, Pichler BJ, editors. Small animal imaging—basics and practical guide. Heidelberg: Springer; 2011. p. 543–64.

    Chapter  Google Scholar 

  78. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.

    Article  CAS  PubMed  Google Scholar 

  79. Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002;3(2):142–51.

    Article  CAS  PubMed  Google Scholar 

  80. Goetti R, O’Gorman R, Khan N, Kellenberger CJ, Scheer I. Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI. Neuroradiology. 2013;55(5):639–47.

    Article  PubMed  Google Scholar 

  81. Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I. Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA. 2012;25(2):145–53.

    Article  PubMed  Google Scholar 

  82. Thomas D, Wells J. MR angiography and arterial spin labelling. Method Mol Biol. 2011;711:327–45.

    Article  Google Scholar 

  83. Kazan SM, Chappell MA, Payne SJ. Modelling the effects of cardiac pulsations in arterial spin labelling. Phys Med Biol. 2010;55(3):799–816.

    Article  CAS  PubMed  Google Scholar 

  84. Richards TL. Multinuclear Magnetic Resonance Spectroscopic Imaging. Encyclopedia of Analytical Chemistry. New York: Wiley; 2006.

  85. Rudin M. Imaging techniques. Molecular imaging: basic principles and applications in biomedical research. London: Imperial College Press; 2005. p. 45–140.

  86. Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics. 2007;4(3):330–45.

    Article  CAS  PubMed  Google Scholar 

  87. Gujar SK, Maheshwari S, Bjorkman-Burtscher I, Sundgren PC. Magnetic resonance spectroscopy. J Neuroophthalmol. 2005;25(3):217–26.

    Article  PubMed  Google Scholar 

  88. van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 2010;39(4):527–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Zhu H, Barker PB. MR spectroscopy and spectroscopic imaging of the brain. Methods Mol Biol. 2011;711:203–26.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Forster D, Davies K, Williams S. Magnetic resonance spectroscopy in vivo of neurochemicals in a transgenic model of Alzheimer’s disease: a longitudinal study of metabolites, relaxation time, and behavioral analysis in TASTPM and wild-type mice. Magn Reson Med. 2013;69(4):944–55.

    Google Scholar 

  91. He Q, Xu RZ, Shkarin P, Pizzorno G, Lee-French CH, Rothman DL, et al. Magnetic resonance spectroscopic imaging of tumor metabolic markers for cancer diagnosis, metabolic phenotyping, and characterization of tumor microenvironment. Dis Markers. 2003;19(2–3):69–94.

    CAS  PubMed  Google Scholar 

  92. Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol. 2003;13(2):231–43.

    PubMed  Google Scholar 

  93. Chin PT, Welling MM, Meskers SC, Valdes Olmos RA, Tanke H, van Leeuwen FW. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40(8):1283–91.

    Article  CAS  PubMed  Google Scholar 

  94. Wilson T, Hastings J. Bioluminescence. Annu Rev Cell Dev Biol. 1988;14:197–230.

    Article  Google Scholar 

  95. Greer LF III, Szalay AA. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence. 2002;17(1):43-74.

    Google Scholar 

  96. Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002;2(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  97. Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med. 2008;49(2):169–72.

    Article  PubMed  Google Scholar 

  98. Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003;13(1):195–208.

    PubMed  Google Scholar 

  99. Kruger RA. Photoacoustic ultrasound. Med Phys. 1994;21(1):127–31.

    Article  CAS  PubMed  Google Scholar 

  100. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54(16):N355–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Liu H, Ren G, Miao Z, Zhang X, Tang X, Han P, et al. Molecular optical imaging with radioactive probes. PloS One. 2010;5(3):e9470.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, et al. First human Cerenkography. J Biomed Opt. 2013;18(2):20502.

    Article  PubMed  CAS  Google Scholar 

  104. Vooijs M, Jonkers J, Lyons S, Berns A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res. 2002;62(6):1862–7.

    CAS  PubMed  Google Scholar 

  105. Liang HD, Blomley MJ. The role of ultrasound in molecular imaging. British J Radiol. 2003;76 Spec No 2:S140–50.

    Google Scholar 

  106. Coatney RW. Ultrasound imaging: principles and applications in rodent research. ILAR J. 2001;42(3):233–47.

    Article  CAS  PubMed  Google Scholar 

  107. Tremoleda JL, Kerton A, Gsell W. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res. 2012;2(1):44.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Skresanova IV, Barannik EA. Correlation functions and power spectra of Doppler response signals in ultrasonic medical applications. Ultrasonics. 2012;52(5):676–84.

    Article  PubMed  Google Scholar 

  109. Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: current status and future directions. Clin Radiol. 2010;65(7):567–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Greco A, Mancini M, Gargiulo S, Gramanzini M, Claudio PP, Brunetti A, et al. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging. J Biomed Biotechnol. 2012;2012:519238.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Golden HB, Sunder S, Liu Y, Peng X, Dostal DE. In utero assessment of cardiovascular function in the embryonic mouse heart using high-resolution ultrasound biomicroscopy. Method Mol Biol. 2012;843:245–63.

    Article  CAS  Google Scholar 

  112. Cheung AM, Brown AS, Cucevic V, Roy M, Needles A, Yang V, et al. Detecting vascular changes in tumour xenografts using micro-ultrasound and micro-ct following treatment with VEGFR-2 blocking antibodies. Ultrasound Med Biol. 2007;33(8):1259–68.

    Article  PubMed  Google Scholar 

  113. Kaufmann BA, Lankford M, Behm CZ, French BA, Klibanov AL, Xu Y, et al. High-resolution myocardial perfusion imaging in mice with high-frequency echocardiographic detection of a depot contrast agent. J Am Soc Echocardiogr. 2007;20(2):136–43.

    Article  PubMed  Google Scholar 

  114. Alves KZ, Soletti RC, de Britto MA, de Matos DG, Soldan M, Borges HL, et al. In Vivo endoluminal ultrasound biomicroscopic imaging in a mouse model of colorectal cancer. Acad Radiol. 2013;20(1):90–8.

    Article  PubMed  Google Scholar 

  115. Alexandrakis G, Rannou FR, Chatziioannou AF. Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system. Phys Med Biol. 2006;51(8):2045–53.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Peter J, Ruehle H, Stamm V, Schulz RB, Smith MF, Welch B, et al. Development and initial results of a dual-modality SPECT/optical small animal imager. Nuclear Science Symposium Conference Record; 2005 IEEE; 2005 23–29 Oct: p. 4.

  117. Hyde D, de Kleine R, MacLaurin SA, Miller E, Brooks DH, Krucker T, et al. Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model. Neuroimage. 2009;44(4):1304–11.

    Article  PubMed  Google Scholar 

  118. Wen Z, Fahrig R, Williams ST, Pelc NJ. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/ MR system. Med Phys. 2008;35(9):3895–902.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Gulsen G, Birgul O, Unlu MB, Shafiiha R, Nalcioglu O. Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals. Technol Cancer Res Treat. 2006;5(4):351–63.

    PubMed  Google Scholar 

  120. Kundu BK, Stolin AV, Pole J, Baumgart L, Fontaine M, Wojcik R, et al. Tri-modality small animal imaging system. IEEE Trans Nucl Sci. 2006;53(1):66–70.

    Article  CAS  Google Scholar 

  121. Veit-Haibach P, Kuhn FP, Wiesinger F, Delso G, von Schulthess G. PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine. MAGMA. 2013;26(1):25–35.

    Google Scholar 

  122. Tsukamoto E, Ochi S. PET/CT today: system and its impact on cancer diagnosis. Ann Nucl Med. 2006;20(4):255–67.

    Article  PubMed  Google Scholar 

  123. Bergeron M, Cadorette J, Beaudoin JF, Lepage MD, Robert G, Selivanov V, et al. Performance evaluation of the LabPET APD-based digital PET scanner. IEEE Trans Nucl Sci. 2009;56(1):10–6.

    Article  Google Scholar 

  124. Levin Klausen T, Hogild Keller S, Vinter Olesen O, Aznar M, Andersen FL. Innovations in PET/CT. Q J Nucl Med Mol Imaging. 2012;56(3):268–79.

    CAS  PubMed  Google Scholar 

  125. Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging-part 1: hybrid imaging technologies and SPECT/CT. Insight Imaging. 2011;2(2):161–9.

    Article  Google Scholar 

  126. Hammer BE, Christensen NL, Heil BG. Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys. 1994;21(12):1917–20.

    Article  CAS  PubMed  Google Scholar 

  127. Beyer T, Freudenberg LS, Czernin J, Townsend DW. The future of hybrid imaging-part 3: PET/MR, small-animal imaging and beyond. Insight Imaging. 2011;2(3):235–46.

    Article  Google Scholar 

  128. Wirrwar A, Vosberg H, Herzog H, Halling H, Weber S, MullerGartner HW. 4.5 Tesla magnetic field reduces range of high-energy positrons—potential implications for positron emission tomography. IEEE Trans Nucl Sci. 1997;44(2):184–9.

    Article  CAS  Google Scholar 

  129. Cherry SR. Multimodality imaging: beyond PET/CT and SPECT/CT. Semin Nucl Med. 2009;39(5):348–53.

    Article  PubMed Central  PubMed  Google Scholar 

  130. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. MAGMA. 2013;26(1):99–113.

    Google Scholar 

  131. Tartis MS, Kruse DE, Zheng H, Zhang H, Kheirolomoom A, Marik J, et al. Dynamic microPET imaging of ultrasound contrast agents and lipid delivery. J Controlled Release. 2008;131(3):160–6.

    Article  CAS  Google Scholar 

  132. Markets, Markets. Small Animal Imaging (In Vivo) Market: Competitive Analysis & Global Forecasts to 2017. 2012 [cited 16 Feb 2013]. http://www.companiesandmarkets.com/Market/Healthcare-and-Medical/Market-Research/Small-Animal-Imaging-In-Vivo-Market-Competitive-Analysis-Global-Forecasts-to-2017/RPT1134167.

  133. Balcerzyk M, Kontaxakis G, Delgado M, Garcia-Garcia L, Correcher C, Gonzalez AJ, et al. Initial performance evaluation of a high resolution Albira small animal positron emission tomography scanner with monolithic crystals and depth-of-interaction encoding from a user’s perspective. Measurement Sci Technol. 2009;20(10).

  134. Szanda I, Mackewn J, Patay G, Major P, Sunassee K, Mullen GE, et al. National electrical manufacturers association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT Scanner. J Nucl Med. 2011;52(11):1741–7.

    Google Scholar 

  135. Goorden MC, van der Have F, Kreuger R, Ramakers RM, Vastenhouw B, Burbach JP, et al. VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med. 2013;54(2):306–12.

    Google Scholar 

  136. Goertzen AL, Bao QN, Bergeron M, Blankemeyer E, Blinder S, Canadas M, et al. NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53(8):1300–9.

    Article  PubMed  Google Scholar 

  137. Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50(3):401–8.

    Article  PubMed Central  PubMed  Google Scholar 

  138. Herrmann K, Dahlbom M, Nathanson D, Wei L, Radu C, Chatziioannou A, et al. Evaluation of the Genisys4, a bench-top preclinical PET scanner. J Nucl Med. 2013;54(7):1162–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Lídia Cunha was supported by Programa de Apoio à Formação Avançada de Docentes do Ensino Superior Politécnico (grant SFRH/PROTEC/49698/2009), a Joint Program from Fundação para a Ciência e Tecnologia and Instituto Politécnico do Porto. Domokos Máthé is a consultant from Mediso Ltd and an employee of CROmed Ltd. The authors would like to thank Drs Mariana Teixeira, Nuno Arantes, and Tânia Oliveira, as well as Eng. Lídio Silva for their contribution to the literature compilation and manuscript proofreading.

Conflicts of interest

The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís F. Metello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, L., Horvath, I., Ferreira, S. et al. Preclinical Imaging: an Essential Ally in Modern Biosciences. Mol Diagn Ther 18, 153–173 (2014). https://doi.org/10.1007/s40291-013-0062-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-013-0062-3

Keywords

Navigation