Skip to main content
Log in

The Impact of Hyperoxia on Human Performance and Recovery

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract:

Hyperoxia results from the inhalation of mixtures of gas containing higher partial pressures of oxygen (O2) than normal air at sea level. Exercise in hyperoxia affects the cardiorespiratory, neural and hormonal systems, as well as energy metabolism in humans. In contrast to short-term exposure to hypoxia (i.e. a reduced partial pressure of oxygen), acute hyperoxia may enhance endurance and sprint interval performance by accelerating recovery processes. This narrative literature review, covering 89 studies published between 1975 and 2016, identifies the acute ergogenic effects and health concerns associated with hyperoxia during exercise; however, long-term adaptation to hyperoxia and exercise remain inconclusive. The complexity of the biological responses to hyperoxia, as well as the variations in (1) experimental designs (e.g. exercise intensity and modality, level of oxygen, number of participants), (2) muscles involved (arms and legs) and (3) training status of the participants may account for the discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Priestley J. Experiments and observations on different kinds of air. London: J Johnson; 1775.

    Google Scholar 

  2. Douglas C, Haldane J. The effects of previous forced breathing and oxygen inhalation on the distress caused by muscular work. J Physiol (London). 1909;39:i–iv.

    Google Scholar 

  3. Hill L, Flack M. The influence of oxygen inhalations on muscular work. J Physiol. 1910;40(5):347–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karpovich PV. The effect of oxygen on swimming performance. Res Q Assoc Phys Educ Recreat. 1934;24–30.

  5. World Anti-Doping Agency. http://list.wada-ama.org/. Accessed 8 Aug 2015.

  6. Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.

    Article  PubMed  Google Scholar 

  7. Hauser A, Zinner C, Born DP, et al. Does hyperoxic recovery during cross-country skiing team sprints enhance performance? Med Sci Sports Exerc. 2014;46(4):787–94.

    Article  PubMed  Google Scholar 

  8. McArdle WD, Katch FI, Katch VL. Exercise physiology: energy, nutrition and human performance. Philadelphia: Lippincott Williams & Williams; 2007.

    Google Scholar 

  9. Hollmann W, Strüder H. Sportmedizin. Stuttgart: Schattauer; 2009.

    Google Scholar 

  10. Wilson GD, Welch HG. Effects of hyperoxic gas mixtures on exercise tolerance in man. Med Sci Sports. 1975;7(1):48–52.

    CAS  PubMed  Google Scholar 

  11. Richardson RS, Leigh JS, Wagner PD, et al. Cellular PO2 as a determinant of maximal mitochondrial O(2) consumption in trained human skeletal muscle. J Appl Physiol (1985). 1999;87(1):325–31.

    CAS  Google Scholar 

  12. Peltonen JE, Rantamaki J, Niittymaki SP, et al. Effects of oxygen fraction in inspired air on rowing performance. Med Sci Sports Exerc. 1995;27(4):573–9.

    Article  CAS  PubMed  Google Scholar 

  13. Welch HG. Hyperoxia and human performance: a brief review. Med Sci Sports Exerc. 1982;14(4):253–62.

    Article  CAS  PubMed  Google Scholar 

  14. Noakes TD, Peltonen JE, Rusko HK. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol. 2001;204(Pt 18):3225–34.

    CAS  PubMed  Google Scholar 

  15. Graham TE, Wilson BA. Effects of hypercapnia and hyperoxia on metabolism during exercise. Med Sci Sports Exerc. 1983;15(6):514–9.

    Article  CAS  PubMed  Google Scholar 

  16. Plet J, Pedersen PK, Jensen FB, et al. Increased working capacity with hyperoxia in humans. Eur J Appl Physiol Occup Physiol. 1992;65(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hogan MC, Cox RH, Welch HG. Lactate accumulation during incremental exercise with varied inspired oxygen fractions. J Appl Physiol. 1983;55(4):1134–40.

    CAS  PubMed  Google Scholar 

  18. Prieur F, Benoit H, Busso T, et al. Effects of moderate hyperoxia on oxygen consumption during submaximal and maximal exercise. Eur J Appl Physiol. 2002;88(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen HB, Boushel R, Madsen P, et al. Cerebral desaturation during exercise reversed by O2 supplementation. Am J Physiol. 1999;277(3 Pt 2):H1045–52.

    CAS  PubMed  Google Scholar 

  20. Nummela A, Hamalainen I, Rusko H. Effect of hyperoxia on metabolic responses and recovery in intermittent exercise. Scand J Med Sci Sports. 2002;12(5):309–15.

    Article  CAS  PubMed  Google Scholar 

  21. Peltonen JE, Tikkanen HO, Ritola JJ, et al. Oxygen uptake response during maximal cycling in hyperoxia, normoxia and hypoxia. Aviat Space Environ Med. 2001;72(10):904–11.

    CAS  PubMed  Google Scholar 

  22. Amann M, Eldridge MW, Lovering AT, et al. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol. 2006;575(Pt 3):937–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grataloup O, Prieur F, Busso T, et al. Effect of hyperoxia on maximal O2 uptake in exercise-induced arterial hypoxaemic subjects. Eur J Appl Physiol. 2005;94(5–6):641–5.

    Article  CAS  PubMed  Google Scholar 

  24. Hogan MC, Richardson RS, Haseler LJ. Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study. J Appl Physiol (1985). 1999;86(4):1367–73.

    CAS  Google Scholar 

  25. Hughson RL, Kowalchuk JM. Kinetics of oxygen uptake for submaximal exercise in hyperoxia, normoxia, and hypoxia. Can J Appl Physiol. 1995;20(2):198–210.

    Article  CAS  PubMed  Google Scholar 

  26. Knight DR, Poole DC, Hogan MC, et al. Effect of inspired O2 concentration on leg lactate release during incremental exercise. J Appl Physiol (1985). 1996;81(1):246–51.

    CAS  Google Scholar 

  27. Knight DR, Schaffartzik W, Poole DC, et al. Effects of hyperoxia on maximal leg O2 supply and utilization in men. J Appl Physiol (1985). 1993;75(6):2586–94.

    CAS  Google Scholar 

  28. Linossier MT, Dormois D, Arsac L, et al. Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiol Scand. 2000;168(3):403–11.

    Article  CAS  PubMed  Google Scholar 

  29. Oussaidene K, Prieur F, Bougault V, et al. Cerebral oxygenation during hyperoxia-induced increase in exercise tolerance for untrained men. Eur J Appl Physiol. 2013;113(8):2047–56.

    Article  PubMed  Google Scholar 

  30. Peltonen JE, Rusko HK, Rantamaki J, et al. Effects of oxygen fraction in inspired air on force production and electromyogram activity during ergometer rowing. Eur J Appl Physiol Occup Physiol. 1997;76(6):495–503.

    Article  CAS  PubMed  Google Scholar 

  31. Ploutz-Snyder LL, Simoneau JA, Gilders RM, et al. Cardiorespiratory and metabolic adaptations to hyperoxic training. Eur J Appl Physiol Occup Physiol. 1996;73(1–2):38–48.

    Article  CAS  PubMed  Google Scholar 

  32. Tucker R, Kayser B, Rae E, et al. Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. Eur J Appl Physiol. 2007;101(6):771–81.

    Article  CAS  PubMed  Google Scholar 

  33. Vogiatzis I, Athanasopoulos D, Boushel R, et al. Contribution of respiratory muscle blood flow to exercise-induced diaphragmatic fatigue in trained cyclists. J Physiol. 2008;586(Pt 22):5575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walsh ML, Banister EW. The influence of inspired oxygen on the oxygen uptake response to ramp exercise. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):71–5.

    Article  CAS  PubMed  Google Scholar 

  35. Mateika JH, Duffin J. The ventilation, lactate and electromyographic thresholds during incremental exercise tests in normoxia, hypoxia and hyperoxia. Eur J Appl Physiol Occup Physiol. 1994;69(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wilkerson DP, Berger NJ, Jones AM. Influence of hyperoxia on pulmonary O2 uptake kinetics following the onset of exercise in humans. Resp Physiol Neurobiol. 2006;153(1):92–106.

    Article  CAS  Google Scholar 

  37. Sperlich B, Schiffer T, Achtzehn S, et al. Pre-exposure to hyperoxic air does not enhance power output during subsequent sprint cycling. Eur J Appl Physiol. 2010;110(2):301–5.

    Article  PubMed  Google Scholar 

  38. Kay B, Stannard SR, Morton RH. Hyperoxia during recovery improves peak power during repeated Wingate cycle performance. Braz J Biomotricity. 2008;2:92–100.

    Google Scholar 

  39. Sperlich B, Zinner C, Krueger M, et al. Effects of hyperoxia during recovery from 5×30-s bouts of maximal-intensity exercise. J Sports Sci. 2012;30(9):851–8.

    Article  PubMed  Google Scholar 

  40. Zinner C, Wahl P, Achtzehn S, et al. Effects of bicarbonate ingestion and high intensity exercise on lactate and H(+)-ion distribution in different blood compartments. Eur J Appl Physiol. 2011;111(8):1641–8.

    Article  CAS  PubMed  Google Scholar 

  41. Maeda T, Yasukouchi A. Blood lactate disappearance during breathing hyperoxic gas after exercise in two different physical fitness groups—on the work load fixed at 70% VO2max. App Human Sci. 1997;16(6):249–55.

    Article  CAS  Google Scholar 

  42. Peeling P, Andersson R. Effect of hyperoxia during the rest periods of interval training on perceptual recovery and oxygen re-saturation time. J Sports Sci. 2011;29(2):147–50.

    Article  PubMed  Google Scholar 

  43. White J, Dawson B, Landers G, et al. Effect of supplemental oxygen on post-exercise inflammatory response and oxidative stress. Eur J Appl Physiol. 2013;113(4):1059–67.

    Article  CAS  PubMed  Google Scholar 

  44. Sperlich B, Zinner C, Krueger M, et al. Ergogenic effect of hyperoxic recovery in elite swimmers performing high-intensity intervals. Scand J Med Sci Sports. 2011;21(6):e421–9.

    Article  CAS  PubMed  Google Scholar 

  45. Garner RP, Powers SK, Church G. Effects of hypoxia and hyperoxia on ventilatory kinetics during recovery from exercise. Aviat Space Environ Med. 1986;57(12 Pt 1):1165–9.

    CAS  PubMed  Google Scholar 

  46. Robbins MK, Gleeson K, Zwillich CW. Effect of oxygen breathing following submaximal and maximal exercise on recovery and performance. Med Sci Sports Exerc. 1992;24(6):720–5.

    Article  CAS  PubMed  Google Scholar 

  47. Winter FD Jr, Snell PG, Stray-Gundersen J. Effects of 100% oxygen on performance of professional soccer players. JAMA. 1989;262(2):227–9.

    Article  PubMed  Google Scholar 

  48. Bangsbo J, Krustrup P, Gonzalez-Alonso J, et al. ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise. Am J Physiol Endocrin Metab. 2001;280(6):E956–64.

    CAS  Google Scholar 

  49. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol (1985). 1993;75(2):712–9.

    CAS  Google Scholar 

  50. Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277(5 Pt 1):E890–900.

    CAS  PubMed  Google Scholar 

  51. Haseler LJ, Richardson RS, Videen JS, et al. Phosphocreatine hydrolysis during submaximal exercise: the effect of FIO2. J Appl Physiol (1985). 1998;85(4):1457–63.

    CAS  Google Scholar 

  52. Haseler LJ, Hogan MC, Richardson RS. Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol (1985). 1999;86(6):2013–8.

    CAS  Google Scholar 

  53. Yokoi Y, Yanagihashi R, Morishita K, et al. Recovery effects of repeated exposures to normobaric hyperoxia on local muscle fatigue. J Strength Cond Res. 2014;28(8):2173–9.

    Article  PubMed  Google Scholar 

  54. Kilding AE, Wood M, Sequira G, et al. Effect of hyperoxic-supplemented interval training on endurance performance in trained cyclists. Int J Sports Med. 2012;33(5):359–63.

    Article  CAS  PubMed  Google Scholar 

  55. Perry CG, Reid J, Perry W, et al. Effects of hyperoxic training on performance and cardiorespiratory response to exercise. Med Sci Sports Exerc. 2005;37(7):1175–9.

    Article  PubMed  Google Scholar 

  56. Perry CG, Talanian JL, Heigenhauser GJ, et al. The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance. J Appl Physiol (1985). 2007;102(3):1022–7.

    Article  CAS  Google Scholar 

  57. Morris DM, Kearney JT, Burke ER. The effects of breathing supplemental oxygen during altitude training on cycling performance. J Sci Med Sport. 2000;3(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  58. Brechue WF, Ameredes BT, Barclay JK, et al. Blood flow and pressure relationships which determine VO2max. Med Sci Sports Exerc. 1995;27(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  59. Stainsby WN, Brechue WF, Ameredes BT. Muscle blood flow and distribution determine maximal VO2 of contracting muscle. Med Sci Sports Exerc. 1995;27(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  60. Ekblom B, Huot R, Stein EM, et al. Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol. 1975;39(1):71–5.

    CAS  PubMed  Google Scholar 

  61. Dempsey JA, Wagner PD. Exercise-induced arterial hypoxemia. J Appl Physiol (1985). 1999;87(6):1997–2006.

    CAS  Google Scholar 

  62. Dean JB, Mulkey DK, Henderson RA, et al. Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons. J Appl Physiol (1985). 2004;96(2):784–91.

    Article  Google Scholar 

  63. Subudhi AW, Lorenz MC, Fulco CS, et al. Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance. Am J Physiol Heart Circ Physiol. 2008;294(1):H164–71.

    Article  CAS  PubMed  Google Scholar 

  64. Pedersen PK, Kiens B, Saltin B. Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise. Acta Physiol Scand. 1999;166(4):309–18.

    Article  CAS  PubMed  Google Scholar 

  65. Richardson RS, Grassi B, Gavin TP, et al. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps. J Appl Physiol (1985). 1999;86(3):1048–53.

    CAS  Google Scholar 

  66. Peltonen JE, Tikkanen HO, Rusko HK. Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia and normoxia. Eur J Appl Physiol. 2001;85(1–2):82–8.

    Article  CAS  PubMed  Google Scholar 

  67. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985). 1996;80(3):876–84.

    CAS  Google Scholar 

  68. Hirvonen J, Rehunen S, Rusko H, et al. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1987;56(3):253–9.

    Article  CAS  PubMed  Google Scholar 

  69. Stellingwerff T, Glazier L, Watt MJ, et al. Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise. J Appl Physiol (1985). 2005;98(1):250–6.

    Article  CAS  Google Scholar 

  70. Stellingwerff T, Leblanc PJ, Hollidge MG, et al. Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise. Am J Physiol Endocrin Metab. 2006;290(6):E1180–90.

    Article  CAS  Google Scholar 

  71. Layec G, Bringard A, Le Fur Y, et al. Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles. Am J Physiol Regul Integr Comp Physiol. 2015;308(8):R724–33.

    Article  CAS  PubMed  Google Scholar 

  72. Hesse B, Kanstrup IL, Christensen NJ, et al. Reduced norepinephrine response to dynamic exercise in human subjects during O2 breathing. J Appl Physiol. 1981;51(1):176–8.

    CAS  PubMed  Google Scholar 

  73. Howley ET, Cox RH, Welch HG, et al. Effect of hyperoxia on metabolic and catecholamine responses to prolonged exercise. J Appl Physiol. 1983;54(1):59–63.

    CAS  PubMed  Google Scholar 

  74. Kane DA. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work. Front Neurosci. 2014;8:366.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wilson DF, Erecinska M, Drown C, et al. The oxygen dependence of cellular energy metabolism. Arch Biochem Biophys. 1979;195(2):485–93.

    Article  CAS  PubMed  Google Scholar 

  76. Hogan MC, Arthur PG, Bebout DE, et al. Role of O2 in regulating tissue respiration in dog muscle working in situ. J Appl Physiol (1985). 1992;73(2):728–36.

    CAS  Google Scholar 

  77. Macdonald M, Pedersen PK, Hughson RL. Acceleration of VO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise. J Appl Physiol (1985). 1997;83(4):1318–25.

    CAS  Google Scholar 

  78. Favier FB, Prieur F, Grataloup O, et al. A high blood lactate induced by heavy exercise does not affect the increase in submaximal VO2 with hyperoxia. Eur J Appl Physiol. 2005;94(1–2):107–12.

    Article  CAS  PubMed  Google Scholar 

  79. Noakes TD. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front Physiol. 2012;3:82.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ansley L, Petersen D, Thomas A, et al. The effect of breathing an ambient low-density, hyperoxic gas on the perceived effort of breathing and maximal performance of exercise in well-trained athletes. Br J Sports Med. 2007;41(1):2–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gerstner B, Sifringer M, Dzietko M, et al. Estradiol attenuates hyperoxia-induced cell death in the developing white matter. Ann Neurol. 2007;61(6):562–73.

    Article  CAS  PubMed  Google Scholar 

  82. Mach WJ, Thimmesch AR, Pierce JT, et al. Consequences of hyperoxia and the toxicity of oxygen in the lung. Nurs Res Pract. 2011;2011:260482.

    PubMed  PubMed Central  Google Scholar 

  83. Parinandi NL, Kleinberg MA, Usatyuk PV, et al. Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol. 2003;284(1):L26–38.

    CAS  Google Scholar 

  84. Wilber RL, Holm PL, Morris DM, et al. Effect of FIO2 on oxidative stress during interval training at moderate altitude. Med Sci Sports Exerc. 2004;36(11):1888–94.

    Article  CAS  PubMed  Google Scholar 

  85. Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993;215(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  86. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    Article  CAS  PubMed  Google Scholar 

  87. Zaher TE, Miller EJ, Morrow DM, et al. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med. 2007;42(7):897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Palazzetti S, Richard MJ, Favier A, et al. Overloaded training increases exercise-induced oxidative stress and damage. Can J Appl Physiol. 2003;28(4):588–604.

    Article  CAS  PubMed  Google Scholar 

  90. Kahler W, Koch I, Wohlrab C, et al. Influence of hyperoxia and physical exercise on *OH-radical stress in humans as measured by dihydroxylated benzoates (DHB) in urine. Undersea Hyperb Med. 2013;40(3):231–8.

    CAS  PubMed  Google Scholar 

  91. Calbet JA, Holmberg HC, Rosdahl H, et al. Why do arms extract less oxygen than legs during exercise? Am J Physiol Regul Integr Comp Physiol. 2005;289(5):R1448–58.

    Article  CAS  PubMed  Google Scholar 

  92. Volianitis S, Secher NH. Rowing, the ultimate challenge to the human body—implications for physiological variables. Clin Physiol Funct Imaging. 2009;29(4):241–4.

    Article  PubMed  Google Scholar 

  93. Ahlborg G, Jensen-Urstad M. Metabolism in exercising arm vs. leg muscle. Clin Physiol. 1991;11(5):459–68.

    Article  CAS  PubMed  Google Scholar 

  94. Secher NH, Ruberg-Larsen N, Binkhorst RA, et al. Maximal oxygen uptake during arm cranking and combined arm plus leg exercise. J Appl Physiol. 1974;36(5):515–8.

    CAS  PubMed  Google Scholar 

  95. Jeukendrup A, Saris WH, Brouns F, et al. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28(2):266–70.

    Article  CAS  PubMed  Google Scholar 

  96. Zinner C, Hauser A, Born DP, et al. Influence of hypoxic interval training and hyperoxic recovery on muscle activation and oxygenation in connection with double-poling exercise. PloS One. 2015;10(10):e0140616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Segizbaeva MO, Aleksandrova NP. Effects of oxygen breathing on inspiratory muscle fatigue during resistive load in cycling men. J Physiol Pharmacol. 2009;60(Suppl 5):111–5.

    PubMed  Google Scholar 

  98. Vogiatzis I, Zakynthinos S, Boushel R, et al. The contribution of intrapulmonary shunts to the alveolar-to-arterial oxygen difference during exercise is very small. J Physiol. 2008;586(Pt 9):2381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lovering AT, Stickland MK, Amann M, et al. Hyperoxia prevents exercise-induced intrapulmonary arteriovenous shunt in healthy humans. J Physiol. 2008;586(Pt 18):4559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilber RL, Holm PL, Morris DM, et al. Effect of F(I)O(2) on physiological responses and cycling performance at moderate altitude. Med Sci Sports Exerc. 2003;35(7):1153–9.

    Article  PubMed  Google Scholar 

  101. Eves ND, Petersen SR, Jones RL. Hyperoxia improves maximal exercise with the self-contained breathing apparatus (SCBA). Ergonomics. 2002;45(12):829–39.

    Article  PubMed  Google Scholar 

  102. Nielsen HB, Madsen P, Svendsen LB, et al. The influence of PaO2, pH and SaO2 on maximal oxygen uptake. Acta Physiol Scand. 1998;164(1):89–7.

    Article  CAS  PubMed  Google Scholar 

  103. Eiken O, Tesch PA. Effects of hyperoxia and hypoxia on dynamic and sustained static performance of the human quadriceps muscle. Acta Physiol Scand. 1984;122(4):629–33.

    Article  CAS  PubMed  Google Scholar 

  104. Murray K, Sommerville A, McKenna M, et al. Normobaric Hyperoxia training in elite female hockey players. J Sports Med Phys Fitness. [Epub 2015 Oct 27].

  105. Mourtzakis M, Gonzalez-Alonso J, Graham TE, et al. Hemodynamics and O2 uptake during maximal knee extensor exercise in untrained and trained human quadriceps muscle: effects of hyperoxia. J Appl Physiol (1985). 2004;97(5):1796–802.

    Article  CAS  Google Scholar 

  106. Edgell H, Stickland MK. Activation of the carotid chemoreflex secondary to muscle metaboreflex stimulation in men. Am J Physiol Regul Integr Comp Physiol. 2014;306(9):R693–700.

    Article  CAS  PubMed  Google Scholar 

  107. Prieur F, Dupont G, Blondel N, et al. Hyperoxia does not accelerate quadriceps muscle deoxygenation kinetics at the onset of heavy exercise cycle. J Sports Med Phys Fitness. 2012;52(2):137–43.

    CAS  PubMed  Google Scholar 

  108. Casey DP, Joyner MJ, Claus PL, et al. Hyperbaric hyperoxia reduces exercising forearm blood flow in humans. Am J Physiol Heart Circ Physiol. 2011;300(5):H1892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ando S, Yamada Y, Tanaka T, et al. Reaction time to peripheral visual stimuli during exercise under normoxia and hyperoxia. Eur J Appl Physiol. 2009;106(1):61–9.

    Article  PubMed  Google Scholar 

  110. Volianitis S, Fabricius-Bjerre A, Overgaard A, et al. The cerebral metabolic ratio is not affected by oxygen availability during maximal exercise in humans. J Physiol. 2008;586(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  111. Stickland MK, Morgan BJ, Dempsey JA. Carotid chemoreceptor modulation of sympathetic vasoconstrictor outflow during exercise in healthy humans. J Physiol. 2008;586(6):1743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Amann M, Hopkins WG, Marcora SM. Similar sensitivity of time to exhaustion and time-trial time to changes in endurance. Med Sci Sports Exerc. 2008;40(3):574–8.

    Article  PubMed  Google Scholar 

  113. Marwood S, Bowtell JL. Effects of glutamine and hyperoxia on pulmonary oxygen uptake and muscle deoxygenation kinetics. Eur J Appl Physiol. 2007;99(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  114. Houssiere A, Najem B, Pathak A, et al. Chemoreflex and metaboreflex responses to static hypoxic exercise in aging humans. Med Sci Sports Exerc. 2006;38(2):305–12.

    Article  PubMed  Google Scholar 

  115. Haseler LJ, Kindig CA, Richardson RS, et al. The role of oxygen in determining phosphocreatine onset kinetics in exercising humans. J Physiol. 2004;558(Pt 3):985–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peltonen JE, Leppavuori AP, Kyro KP, et al. Arterial haemoglobin oxygen saturation is affected by F(I)O2 at submaximal running velocities in elite athletes. Scand J Med Sci Sports. 1999;9(5):265–71.

    Article  CAS  PubMed  Google Scholar 

  117. Struder HK, Hollmann W, Donike M, et al. Effect of O2 availability on neuroendocrine variables at rest and during exercise: O2 breathing increases plasma prolactin. Eur J Appl Physiol Occup Physiol. 1996;74(5):443–9.

    Article  CAS  PubMed  Google Scholar 

  118. Miyamoto Y, Niizeki K. Ventilatory responses during incremental exercise in men under hyperoxic conditions. Jpn J Physiol. 1995;45(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  119. Seals DR, Johnson DG, Fregosi RF. Hyperoxia lowers sympathetic activity at rest but not during exercise in humans. Am Physiol. 1991;260(5 Pt 2):R873–8.

    CAS  Google Scholar 

  120. Nakazono Y, Miyamoto Y. Effect of hypoxia and hyperoxia on cardiorespiratory responses during exercise in man. Jpn J Physiol. 1987;37(3):447–57.

    Article  CAS  PubMed  Google Scholar 

  121. Adams RP, Cashman PA, Young JC. Effect of hyperoxia on substrate utilization during intense submaximal exercise. J Appl Physiol. 1986;61(2):523–9.

    CAS  PubMed  Google Scholar 

  122. Byrnes WC, Mihevic PM, Freedson PS, et al. Submaximal exercise quantified as percent of normoxic and hyperoxic maximum oxygen uptakes. Med Sci Sports Exerc. 1984;16(6):572–7.

    Article  CAS  PubMed  Google Scholar 

  123. Oren A, Whipp BJ, Wasserman K. Effect of acid-base status on the kinetics of the ventilatory response to moderate exercise. J Appl Physiol. 1982;52(4):1013–7.

    CAS  PubMed  Google Scholar 

  124. Byrnes WC, Mullin JP. Metabolic effects of breathing hyperoxic gas mixtures during heavy exercise. Int J Sports Med. 1981;2(4):236-9.

    Article  Google Scholar 

  125. Wilson GD, Welch HG. Effects of varying concentrations of N2/O2 and He/O2 on exercise tolerance in man. Med Sci Sports Exerc. 1980;12(5):380–4.

    Article  CAS  PubMed  Google Scholar 

  126. Adams RP, Welch HG. Oxygen uptake, acid-base status, and performance with varied inspired oxygen fractions. J Appl Physiol. 1980;49(5):863–8.

    CAS  PubMed  Google Scholar 

  127. Wilson BA, Welch HG, Liles JN. Effects of hyperoxic gas mixtures on energy metabolism during prolonged work. J Appl Physiol. 1975;39(2):267–71.

    CAS  PubMed  Google Scholar 

  128. Vanhatalo A, Fulford J, DiMenna FJ, et al. Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study. Exp Physiol. 2010;95(4):528–40.

    Article  CAS  PubMed  Google Scholar 

  129. Savasi I, Evans MK, Heigenhauser GJ, et al. Skeletal muscle metabolism is unaffected by DCA infusion and hyperoxia after onset of intense aerobic exercise. Am J Physiol Endocrinol Metabol. 2002;283(1):E108–15.

    Article  CAS  Google Scholar 

  130. Evans MK, Savasi I, Heigenhauser GJ, et al. Effects of acetate infusion and hyperoxia on muscle substrate phosphorylation after onset of moderate exercise. Am J Physiol Endocrinol Metabol. 2001;281(6):E1144–50.

    CAS  Google Scholar 

  131. Katayama K, Amann M, Pegelow DF, et al. Effect of arterial oxygenation on quadriceps atigability during isolated muscle exercise. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1279–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy Sperlich.

Ethics declarations

Funding

No external funding was received for preparation of this article.

Conflict of interest

Billy Sperlich, Christoph Zinner, Anna Hauser, Hans-Christer Holmberg and Jennifer Wegrzyk declare that they have no conflicts of interest relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperlich, B., Zinner, C., Hauser, A. et al. The Impact of Hyperoxia on Human Performance and Recovery. Sports Med 47, 429–438 (2017). https://doi.org/10.1007/s40279-016-0590-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0590-1

Keywords

Navigation