, Volume 43, Issue 7, pp 565-574
Date: 17 Apr 2013

The Case for Driver Science in Motorsport: A Review and Recommendations

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

When discussing sports and the athletes who participate in them, it has long been recognized that fitness is a prerequisite for optimal performance. The goal of training to improve fitness levels in athletes is ultimately to minimize the stress that the body experiences during competition. When it comes to the topic of racecar drivers, however, drivers and their trainers have largely been left to their own devices to figure out the stressors and the areas of specific training focus. Unfortunately, racecar drivers have battled the stereotype that they are not athletes, and with little regard for them as athletes, drivers are seldom the focus of scientific research related to their performance. Like the cars they drive, driver-athletes are complex, but from a physiological perspective. However, unlike the cars they drive, driver-athletes have not been examined, evaluated, and tweaked to the same degree. The purpose of this review is two-fold: first, by examining the available literature, to make the case for new research into the driver’s role in the driver-car system (i.e. driver science) and the stresses experienced; second, to make the case for more extensive use of microtechnology in the real-time monitoring of driver-athletes. With the miniaturization of sensors and the advent of portable data storage devices, the prospect of quantifying the stresses unique to the driver are no longer as daunting, and the relative impossibility and difficulties associated with measuring the driver-athlete in real-time no longer need to be as challenging. Using microtechnology in the assessment of the driver-athlete and with a more public discussion and dissemination of information on the topic of driver science, the scientific community has the opportunity to quantify that which has been largely assumed and speculated. The current article will offer the following recommendations: first, rather than examining a singular physiological stressor, to examine the interaction of stressors; second, to examine variables/stressors that are more representative of the changing driver demographics; third, to measure drivers in real-time during actual race events; lastly, to work to develop training programs that more accurately apply to the driver and the stresses experienced. In uncovering this information, there is an opportunity to contribute to racing becoming that much safer, that much more competitive, and that much more comprehensive for the driver, the team, and the sport.