Homology of distributive lattices
 Józef H. Przytycki,
 Krzysztof K. Putyra
 … show all 2 hide
Purchase on Springer.com
$39.95 / €34.95 / £29.95*
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Abstract
We outline the theory of sets with distributive operations: multishelves and multispindles, with examples provided by semilattices, lattices and skew lattices. For every such a structure we define multiterm distributive homology and show some of its properties. The main result is a complete formula for the homology of a finite distributive lattice. We also indicate the answer for unital spindles and conjecture the general formula for semilattices and some skew lattices. Then we propose a generalization of a lattice as a set with a number of idempotent operations satisfying the absorption law.
 Balbes R., Dwinger P.: Distributive Lattices. University of Missouri Press, Columbia (1974)
 Bourbaki N.: Algebra I: Chapters 1–3, Elements of Mathematics. Springer, Berlin (1989)
 Carter, J.S.: A Survey of Quandle Ideas, the chapter in the book Introductory Lectures on Knot Theory: Selected Lectures presented at the Advanced School and Conference on Knot Theory and its Applications to Physics and Biology, ICTP, Trieste, Italy, 11–29 May 2009. World Scientific, Series on Knots and Everything, vol. 46, pp. 22–53 (2011)
 Carter S., Jelsovsky D., Kamada S., Langford L., Saito M.: Statesum invariants of knotted curves and surfaces from quandle cohomology. Electron. Res. Announc. Am. Math. Soc 5, 146–156 (1999) CrossRef
 Carter S., Jelsovsky D., Kamada S., Saito M.: Quandle homology groups, their Betti numbers, and virtual knots. J. Pure Appl. Algebra 157, 135–155 (2001) CrossRef
 Carter, S., Kamada, S., Saito, M.: Surfaces in 4space. In: Gamkrelidze, R.V., Vassiliev, V.A. (eds.) Encyclopaedia of Mathematical Sciences, LowDimensional Topology III
 Clauwens F.J.B.J.: The algebra of rack and quandle cohomology. J. Knot Theory Ramif. 20(11), 1487–1535 (2011) CrossRef
 Crans, A.S.: Lie 2algebras. PhD dissertation (2004). UC Riverside, arXiv:math.QA/0409602
 Etingof P., Grana M.: On rack cohomology. J. Pure Appl. Algebra 177, 49–59 (2003) CrossRef
 Frabetti, A.: Dialgebra (co)homology with coefficients. In: Loday, J.L., Frabetti, A., Chapoton, F., Goichot, F. (eds.) Dialgebras and Related Operads. Lectures Notes in Mathematics, vol. 1763, pp. 67–103. Springer, Berlin (2001)
 Frabetti A.: Dialgebra homology of associative algebras. C.R. Acad. Sci. Paris 325, 135–140 (1997) CrossRef
 Fenn, R.: Tackling the Trefoils (preprint, 2011); arXiv:1110.0582v1 (will appear in the volume “Virtual knots” in JKTR)
 Fenn R., Rourke C.: Racks and links in codimension two. J. Knot Theory Ramif. 1(4), 343–406 (1992) CrossRef
 Fenn R., Rourke C., Sanderson B.J.: James bundles and applications. Proc. Lond. Math. Soc. 3(89(1), 217–240 (2004) CrossRef
 Grätzer, G.: Lattice Theory. First concepts and distributive lattices. W.H. Freeman, San Francisco (1971) (Dover edition 2009)
 Greene, M.: Some results in geometric topology and geometry. PhD thesis, University of Warwick, advisor: Brian Sanderson (1997)
 Hochschild G.: On the cohomology groups of an associative algebra. Ann. Math. 46, 58–67 (1945) CrossRef
 Inasaridze K.N.: Homotopy of pseudosimplicial groups, nonabelian derived functors and algebraic Ktheory. Math. USSR Sbornik 98(3), 339–362 (1975)
 Joyce D.: A classifying invariant of knots: the knot quandle. J. Pure Appl. Algebra 23, 37–65 (1982) CrossRef
 Leech J.E.: Normal skew lattices. Semigroup Forum 44, 1–8 (1992) CrossRef
 Leech J.E.: Recent developments in the theory of skew lattices. Semigroup Forum 52, 7–24 (1996) CrossRef
 Leech J.E.: Skew lattices in rings. A. Universalis 26, 48–72 (1989) CrossRef
 Litherland R.A., Nelson S.: The Betti numbers of some finite racks. J. Pure Appl. Algebra 178, 187–202 (2003) CrossRef
 Loday, J.L.: Cyclic Homology. Grund. Math. Wissen. Band 301. Springer, Berlin (1992) (second edition, 1998)
 Niebrzydowski M., Przytycki J.H.: Burnside Kei. Fundamenta Mathematicae 190, 211–229 (2006) CrossRef
 Niebrzydowski M., Przytycki J.H.: Homology of dihedral quandles. J. Pure Appl. Algebra 213, 742–755 (2009) CrossRef
 Niebrzydowski M., Przytycki J.H.: The quandle of the trefoil as the dehn quandle of the torus. Osaka J. Math. 46(3), 645–659 (2009)
 Niebrzydowski M., Przytycki J.H.: Homology operations on homology of quandles. J. Algebra 324, 1529–1548 (2010) CrossRef
 Niebrzydowski M., Przytycki J.H.: The second quandle homology of the Takasaki quandle of an odd abelian group is an exterior square of the group. J. Knot Theory Ramif. 20(1), 171–177 (2011) CrossRef
 T. Nosaka, On quandle homology groups of Alexander quandles of prime order. TAMS (submitted)
 Ohtsuki T.: Quandles, in Problems on invariants of knots and 3manifolds. Geom. Topol. Monogr. 4, 455–465 (2003)
 Peirce C.S.: On the algebra of logic. Am. J. Math. 3(1), 15–57 (1880) CrossRef
 Przytycki J.H.: Distributivity versus associativity in the homology theory of algebraic structures. Demonstratio Math 44(4), 823–869 (2011)
 Przytycki, J.H., Sikora, A.S.: Distributive products and their homology. Commun. Algebra (2012), arXiv:1105.3700v1
 Serre, J.P.: Lie algebras and Lie groups, lectures given at Harvard University (1964), 2nd edn. Lecture Notes in Mathematics, vol. 1500, Springer, Berlin (1992)
 Sikorski, R.: Boolean algebras. Springer, Berlin (1960) (second edition 1964)
 Takasaki, M.: Abstraction of symmetric transformation (in Japanese). Tohoku Math. J. 49, 145–207 (1942/1943); the English translation is being prepared by S. Kamada
 Tierney M., Vogel W.: Simplicial derived functors in “Category theory, homology theory and applications”. Springer LNM 68, 167–179 (1969)
 Traczyk, T.: Wstçp do teorii algebr Boole’a, Biblioteka Matematyczna, Tom 37, PWN, Warszawa (1970)
 Title
 Homology of distributive lattices
 Journal

Journal of Homotopy and Related Structures
Volume 8, Issue 1 , pp 3565
 Cover Date
 20130401
 DOI
 10.1007/s4006201200125
 Print ISSN
 21938407
 Online ISSN
 15122891
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Keywords

 Distributive homology
 Lattice
 Boolean algebra
 Spindle
 Multispindle
 Authors

 Józef H. Przytycki ^{(1)} ^{(2)}
 Krzysztof K. Putyra ^{(3)}
 Author Affiliations

 1. Department of Mathematics, George Washington University, Washington, DC, 20052, USA
 2. Institute of Mathematics, University of Gdańsk, Gdańsk, Poland
 3. Department of Mathematics, Columbia University, New York, NY, 10027, USA