Skip to main content
Log in

Studies on Biosynthesis of Antimicrobial Silver Nanoparticles Using Endophytic Fungi Isolated from the Ethno-medicinal Plant Gloriosa superba L.

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Two endophytic fungi isolated from the ethno-medicinal plant Gloriosa superba L. were used for the in vitro biosynthesis of silver nanoparticles (AgNPs). The endophytic fungi were identified as Alternaria solani GS1 and Penicillium funiculosum GS2 based on their ITS regions of rRNA gene sequences. The silver nanoparticles obtained were characterized by UV–visible spectroscopy and transmission electron microscopy. Silver nanoparticles of the size 5–20 nm biosynthesized by A. solani GS1were found to be at peak at 415 nm whereas the AgNPs of the size 5–10 nm biosynthesized using P. funiculosum GS2 showed a maximum peak at 403 nm. An evident superiority of the antimicrobial potency, as denoted by the zone of inhibition by biosynthesized AgNPs using P. funiculosum GS2 compared to that by A. solani GS1, was observed when the nanoparticles were used against three different bacterial strains (Streptococcus pyogenes MTCC1925, Escherichia coli MTCC730 and Enterococcus faecalis MTCC2729) and a fungal strain (Candida albicans MTCC183). The present study elucidates the efficacy of the AgNPs synthesized by endophytic fungi against the three tested bacterial strains as well as the fungal strain C. albicans indicating their potency of bioprospection for medicinal usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarma SD, Anand M (2012) Status of nano science and technology in India. Proc Natl Acad Sci India Sect B Biol Sci 82:99–126

    Article  Google Scholar 

  2. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443

    Article  PubMed  CAS  Google Scholar 

  3. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mat 22:155–160

    Article  CAS  Google Scholar 

  4. Tiwari DK, Behari J, Sen P (2008) Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci 95:647–655

    CAS  Google Scholar 

  5. Mohanpuria P, Rana KN, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  6. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27(6):1712–1720

    Article  Google Scholar 

  7. Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133:835–845

    Article  PubMed  CAS  Google Scholar 

  8. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  PubMed  CAS  Google Scholar 

  9. Dias MA, Lacerda ICA, Pimentel PF, De Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34:46–50

    Article  PubMed  CAS  Google Scholar 

  10. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed NBM 5:382–386

    Article  CAS  Google Scholar 

  11. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515

    Article  CAS  Google Scholar 

  12. Vigeshwaran N, Ashtaputre M, Nachane RP, Paralikar KM, Balasubramanya H (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  Google Scholar 

  13. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus. Penicillium fellutanum isolated from coastal mangrove sediment Coll Surf B: Biointerfaces 71:133–137

    CAS  Google Scholar 

  14. Bhainsa KC, D’Souza SK (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll Surf B Biointerfaces 47:160–164

    Article  CAS  Google Scholar 

  15. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Article  Google Scholar 

  16. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  17. Bhainsa KC, D’Souza SK (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Coll Surf B Biointerfaces 47:160–164

    Article  CAS  Google Scholar 

  18. Basavaraja S, Balaji SD, Lagashetty AH, Rajasab A, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  19. Strobel GA, Manker DC, Mercier J (2005) Endophytic fungi and methods of use [Internet]. United States Patent; 2005 [cited 2010 Nov 2]. Available from: http://www.freepatentsonline. Com/6911338.html

  20. White T, Bruns T, Lee S, Taylor J (1990) PCR Protocols. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) A guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  21. Musarrat J, Dwivedi S, Singh BJ, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Biores Technol 101:8772–8877

    Article  CAS  Google Scholar 

  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol (submitted)

  23. Birla S, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  PubMed  CAS  Google Scholar 

  24. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  25. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed NBM 5:382–386

    Article  CAS  Google Scholar 

  26. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed NBM 6:57–262

    Google Scholar 

  27. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  28. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nano 4:141–144

    Article  CAS  Google Scholar 

  29. Gardea-Torresedey JL, Gomez E, Jose-Yacaman M, Parsons JG, Peralta-Videa JR, Tioani H (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  Google Scholar 

  30. Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bio-burden with a novel silver-containing Hydro fibre dressing. Wound Repair Regen 12:288–294

    Article  PubMed  Google Scholar 

  31. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  32. Duran N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  33. Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Coll Surf B Biointerfaces 75:335–341

    Article  CAS  Google Scholar 

  34. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticle using the fungus Fusarium semitectum. Mater Res Bull 45(5):1164–1170

    Article  Google Scholar 

  35. Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  PubMed  CAS  Google Scholar 

  36. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  PubMed  CAS  Google Scholar 

  37. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed NBM 3:168–171

    Article  CAS  Google Scholar 

  38. Fayaz AM, Balaji K, Girilal M, Yadav R, Tech M, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed NBM 6:103–109

    Article  CAS  Google Scholar 

  39. Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40(1):27–34

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support received from the Department of Electronics & Information Technology, Govt of India is thankfully acknowledged. The authors are also thankful to the Sophisticated Analytical Instrument Facility (SAIF), North Eastern Hill University, Shillong for providing TEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, L.S., Bareh, D.A. & Joshi, S.R. Studies on Biosynthesis of Antimicrobial Silver Nanoparticles Using Endophytic Fungi Isolated from the Ethno-medicinal Plant Gloriosa superba L.. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 84, 1091–1099 (2014). https://doi.org/10.1007/s40011-013-0185-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0185-7

Keywords

Navigation