Skip to main content
Log in

Magnetically-modified natural biogenic iron oxides for organic xenobiotics removal

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Biogenic iron oxides have been collected from a water stream and subsequently magnetically modified using water-based magnetic fluid. Both natural and magnetically modified materials have been characterized in detail using wavelength dispersive X-ray fluorescence spectrometry, X-ray powder diffraction, Mössbauer spectroscopy, electron microscopy and BET surface area measurements. The natural material is composed of 2-line ferrihydrite, forming hollow microtubules—sheaths of Leptothrix ochracea, and detrital components. As a result of the ferrofluid modification, maghemite nanoparticles were identified on the surface of the treated material. The active surface area of the bulk, magnetically-modified sample was 148 m2 g−1. The magnetically modified material was tested as inexpensive magnetically responsive adsorbent for the removal of selected organic xenobiotics, namely organic dyes, from aqueous solutions. The observed maximum adsorption capacities ranged between 34.3 and 97.8 mg of dye per 1 g of adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bazylinski DA, Frankel RB, Konhauser KO (2007) Modes of biomineralization of magnetite by microbes. Geomicrobiol J 24:465–475

    Article  CAS  Google Scholar 

  • Bolto BA (1996) Magnetic particle technology: desalination and water reuse applications. Desalination 106:137–143

    Article  CAS  Google Scholar 

  • Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2006) Phosphate adsorption on synthetic goethite and akaganeite. J Colloid Interface Sci 298:602–608

    Article  CAS  Google Scholar 

  • Emerson E, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583

    Article  CAS  Google Scholar 

  • Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M (2007) Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol 41:4367–4374

    Article  CAS  Google Scholar 

  • Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38:515–550

    Article  CAS  Google Scholar 

  • Gu B, Schmitt J, Chen Z, Llang L, McCarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol 28:38–48

    Article  CAS  Google Scholar 

  • Hanna K (2007) Adsorption of aromatic carboxylate compounds on the surface of synthesized iron oxide-coated sands. Appl Geochem 22:2045–2053

    Article  CAS  Google Scholar 

  • Hartley W, Lepp NW (2008) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390:35–44

    Article  CAS  Google Scholar 

  • Hashimoto H, Yokoyama S, Asaoka H, Kusano Y, Ikeda Y, Seno M, Takada J, Fujii T, Nakanishi M, Murakami R (2007) Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. J Magn Magn Mater 310:2405–2407

    Article  CAS  Google Scholar 

  • James RE, Ferris FG (2004) Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring. Chem Geol 212:301–311

    Article  CAS  Google Scholar 

  • Jeong Y, Fan M, Singh S, Chuang C-L, Saha B, Hans van Leeuwen J (2007) Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents. Chem Eng Process 46:1030–1039

    Article  CAS  Google Scholar 

  • Kang S-K, Choo K-H, Lim K-H (2003) Use of iron oxide particles as adsorbents to enhance phosphorus removal from secondary wastewater effluent. Sep Sci Technol 38:3853–3874

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17–26

    Article  CAS  Google Scholar 

  • Kiwada H, Sato J, Yamada S, Kato Y (1986) Feasibility of magnetic liposomes as a targeting device for drugs. Chem Pharm Bull 34:4253–4258

    Article  CAS  Google Scholar 

  • Ko L, Davis AP, Kim JY, Kim KW (2007) Arsenic removal by a colloidal iron oxide coated sand. J Environ Eng 133:891–898

    Article  CAS  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  • Mayer TD, Jarrell WM (2000) Phosphorus sorption during iron(II) oxidation in the presence of dissolved silica. Water Res 34:3949–3956

    Article  CAS  Google Scholar 

  • Pirillo S, Pedroni V, Rueda E, Ferreira ML (2009) Elimination of dyes from aqueous solutions using iron oxides and chitosan as adsorbents. A comparative study. Quim Nova 32:1239–1244

    Article  CAS  Google Scholar 

  • Pokhrel D, Viraraghavan T (2009) Biological filtration for removal of arsenic from drinking water. J Environ Manag 90:1956–1961

    Article  CAS  Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293

    Article  CAS  Google Scholar 

  • Rentz JA, Turner IP, Ullman JL (2009) Removal of phosphorus from solution using biogenic iron oxides. Water Res 43:2029–2035

    Article  CAS  Google Scholar 

  • Sabbatini P, Rossi F, Thern G, Marajofsky A, de Cortalezzi MMF (2009) Iron oxide adsorbers for arsenic removal: a low cost treatment for rural areas and mobile applications. Desalination 248:184–192

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2002a) Detection of low concentrations of malachite green and crystal violet in water. Water Res 36:196–200

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2002b) Magnetic nanoparticles and biosciences. Mon Chem 133:737–759

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2009) Magnetic nano- and microparticles in biotechnology. Chem Pap 63:497–505

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2010a) Magnetically responsive (nano)composites as perspective materials for environmental technology applications. ENT Mag (January–February) 85–90

  • Safarik I, Safarikova M (2010b) Magnetic fluid modified peanut husks as an adsorbent for organic dyes removal. Phys Procedia 9:274–278

    Article  CAS  Google Scholar 

  • Safarik I, Ptackova L, Safarikova M (2002) Adsorption of dyes on magnetically labeled baker’s yeast cells. Eur Cell Mater 3(Suppl. 2):52–55

    Google Scholar 

  • Safarik I, Safarikova M, Weyda F, Mosiniewicz-Szablewska E, Slawska-Waniewska A (2005) Ferrofluid-modified plant-based materials as adsorbents for batch separation of selected biologically active compounds and xenobiotics. J Magn Magn Mater 293:371–376

    Article  CAS  Google Scholar 

  • Safarik I, Rego LFT, Borovska M, Mosiniewicz-Szablewska E, Weyda F, Safarikova M (2007) New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme Microb Technol 40:1551–1556

    Article  CAS  Google Scholar 

  • Safarik I, Horska K, Safarikova M (2011a) Magnetically responsive biocomposites for inorganic and organic xenobiotics removal. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Berlin, pp 301–320

    Chapter  Google Scholar 

  • Safarik I, Horska K, Safarikova M (2011b) Magnetically modified spent grain for dye removal. J Cereal Sci 53:78–80

    Article  CAS  Google Scholar 

  • Safarik I, Horska K, Svobodova B, Safarikova M (2012) Magnetically modified spent coffee grounds for dyes removal. Eur Food Res Technol 234:345–350

    Article  CAS  Google Scholar 

  • Safarikova M, Safarik I (2001) The application of magnetic techniques in biosciences. Magn Electr Sep 10:223–252

    Article  CAS  Google Scholar 

  • Safarikova M, Ptackova L, Kibrikova I, Safarik I (2005) Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere 59:831–835

    Article  CAS  Google Scholar 

  • Safarikova M, Pona BMR, Mosiniewicz-Szablewska E, Weyda F, Safarik I (2008) Dye adsorption on magnetically modified Chlorella vulgaris cells. Fresenius Environ Bull 17:486–492

    CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manag 91:1915–1929

    Article  CAS  Google Scholar 

  • Tien VN, Thi VTN, Tuan LP, Vigneswaran S, Huu HN, Kandasamy J, Hong KN, Duc TN (2009) Adsorption and removal of arsenic from water by iron ore mining waste. Water Sci Technol 60:2301–2308

    Article  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  • Zak T, Jiraskova Y (2006) CONFIT: Mossbauer spectra fitting program. Surf Interface Anal 38:710–714

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Klara Safarova for electron microscope characterization of the studied samples and Jiri Pechousek for surface area measurement. This work was supported by the research Projects LH11111 and LH12190 (Ministry of Education of the Czech Republic), 13-13709S (Grant Agency of the Czech Republic), Grant from the Technology Agency of the Czech Republic “Competence Centres” (Project TE01020218), by the Operational Program Research and Development for Innovations—European Social Fund (CZ.1.05/2.1.00/03.0058) and by the Joint Research Project FY2011 in the JSPS Bilateral Programs, supported by Ministry of Education, Culture, Sports, Science and Technology of Japan. This study was also supported by JST, CREST. Ivo Safarik thanks the Japanese Society for the Promotion of Science for the financial support of his study stay in Japan in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Safarik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safarik, I., Filip, J., Horska, K. et al. Magnetically-modified natural biogenic iron oxides for organic xenobiotics removal. Int. J. Environ. Sci. Technol. 12, 673–682 (2015). https://doi.org/10.1007/s13762-013-0455-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0455-1

Keywords

Navigation