Skip to main content

Advertisement

Log in

Ozone trends in the vertical structure of Upper Troposphere and Lower stratosphere over the Indian monsoon region

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Ozone trends in the Upper Troposphere and Lower Stratosphere over the Indian region are investigated using three satellite data sets namely Halogen Occultation Experiment (1993–2005), Stratospheric Aerosol and Gas Experiment (1993–2005) II, and Aura Microwave Limb Sounder (MLS, 2005–2011). Estimated ozone trends using multi-variate regression analysis are compared with trends at two Indian ozonesonde stations (Delhi, 28°N, 77°E and Pune, 18°N, 73°E), and a 3-D Chemical Transport Model (CTM, SLIMCAT) for the 1993–2005 time period. Overall, all the observational data sets and model simulations indicate significant increasing trend in the upper troposphere (0–2.5 %/year). In the lower stratosphere, estimated trends are slightly positive up to 30 mb and are negative between 30 and 10 mb. Increasing trends in the upper troposphere is probably due to increasing trends in the tropospheric ozone precursor gases (e.g. CO, NO x , NMHCs). Here, we argue that these contrasting ozone-trend profiles might be partially responsible for insignificant long-term trends in the tropical total column ozone. On seasonal scale, positive trends are observed during all the seasons in the upper troposphere while structure of trend profile varies in lower stratosphere. Seasonal variations of ozone trends and its linkages with stratospheric intrusions and increasing trends in lightning flashes in the troposphere are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baray JL, Ancellet G, Randriambelo T, Baldy S (1999) Tropical cyclone Marlene and stratosphere-troposphere exchange. J Geophys Res 104(D11):13953–13970. doi:10.1029/1999JD900028

    Article  CAS  Google Scholar 

  • Borchi F, Pommereau JP (2007) Evaluation of ozonesondes, HALOE, SAGE II and III, Odin-OSIRIS and –SMR, and ENVISAT-GOMOS, -SCIAMACHY and -MIPAS ozone profiles in the tropics from SAOZ long duration balloon measurements in 2003 and 2004. Atmos Chem Phys 7:2671–2690

    CAS  Google Scholar 

  • Braesicke P, Smith OJ, Telford P, Pyle JA (2011) Ozone concentration changes in the Asian summer monsoon anticyclone and lower stratospheric water vapour: an idealized model study. Geophys Res Lett 38:L03810. doi:10.1029/2010GL046228

    Google Scholar 

  • Chipperfield MP (1999) Multiannual simulations with a three-dimensional chemical transport model. J Geophys Res 104:1781–1805

    CAS  Google Scholar 

  • Chipperfield MP (2006) New version of the TOMCAT/SLIMCAT off-line chemical transport model: intercomparison of stratospheric tracer experiments. Q J Royal Meteorol Soc 132(617):1179–1203

    Google Scholar 

  • Cunnold DM, Chu WP, Barnes RA, McCormick MP, Veiga RE (1989) Validation of SAGE II ozone measurements. J Geophys Res 94:8447–8460

    CAS  Google Scholar 

  • Das SS (2009) A new perspective on MST radar observations of stratospheric intrusions into-troposphere associated with tropical cyclone. Geophys Res Lett 36:L15821. doi:10.1029/2009GL039184

    Google Scholar 

  • Das SS, Sijikumar S, Uma KN (2011) Further investigation on stratospheric air intrusion into the troposphere during the episode of tropical cyclone: numerical simulation and MST radar observations. Atmos Res 101:928–937

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Royal Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Google Scholar 

  • Dhomse S, Weber M, Wohltmann I, Rex M, Burrows J (2006) On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003. Atmos Chem Phys 6:1165–1180

    CAS  Google Scholar 

  • Dhomse S, Chipperfield MP, Feng W, Haigh JD (2011) Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses. Atmos Phys Chem Discuss 11:13975–14001

    Google Scholar 

  • Eyring V, Cionni I, Lamarque JF, Akiyoshi H, Bodeker GE, Charlton-Perez AJ, Frith SM, Gettelman A, Kinnison DE, Nakamura T, Oman LD, Pawson S, Yamashita Y (2010) Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophys Res Lett 37:16

    Google Scholar 

  • Fadnavis S, Beig G (2006a) Decadal solar effects on temperature and ozone in the tropical stratosphere. Ann Geophys 24:2091–2103

    Google Scholar 

  • Fadnavis S, Beig G (2006b) Seasonal variation of trend in temperature and ozone over the tropical stratosphere in the Northern Hemisphere. J Atoms Sol Terri Phys 68:1952–1961

    Google Scholar 

  • Fadnavis S, Chakraborty T, Beig G (2010) Seasonal stratospheric intrusion of ozone in the upper troposphere over India. Ann Geophys 28:2149–2159

    CAS  Google Scholar 

  • Fadnavis S, Buchunde P, Ghude SD, Kulkarni SH, Beig G (2011) Evidence of seasonal enhancement of CO in the upper troposphere over India. Int J Rem Sens 32(22):7441–7452

    Google Scholar 

  • Fleming EL, Jackman CH, Stolarski RS, Douglass AR (2011) A model study of the impact of source gas changes on the stratosphere for 1850–2100. Atmos Chem Phys

  • Forster PMdeF, Shine KP (1997) Radiative forcing and temperature trends from stratospheric ozone changes. J Geophys Res 102:10841–10857

    Google Scholar 

  • Forster PM, Bodeker G, Schofield R, Solomon S, Thompson D (2007) Effects of ozone cooling in the tropical lower stratosphere and upper troposphere. Geophys Res Lett 34(11):8515–8541. doi:10.1029/2007GL031994

    Google Scholar 

  • Froidevaux L, Jiang YB, Lambert A, Livesey NJ, Read WG, Waters JW, Browell EV, Hair JW, Avery MA, McGee TJ, Twigg LW, Sumnicht GK, Jucks KW, Margitan JJ, Sen B, Stachnik RA, Toon GC, Bernath PF, Boone CD, Walker KA, Filipiak MJ, Harwood RS, Fuller RA, Manney GL, Schwartz MJ, Daffer WH, Drouin BJ, Cofield RE, Cuddy DT, Jarnot RF, Knosp BW, Perun VS, Snyder WV, Stek PC, Thurstans RP, Wagner PA (2008) Validation of Aura Microwave Limb Sounder stratospheric ozone measurements. J Geophys Res 113:D15S20. doi:10.1029/2007JD008771

    Google Scholar 

  • Galanter M, Levy H II, Carmichael GR (2000) Impacts of biomass burning on tropospheric CO, NOx, and O3. J Geophys Res 105:6633–6653

    CAS  Google Scholar 

  • Ganguly ND (2009) Variation in atmospheric ozone concentration following strong earthquakes. Int J Rem Sen 30(2):349–356

    Google Scholar 

  • Ghude SD, Fadnavis S, Beig G, Polade SD, der Van RJA (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophys Res 113:D20305. doi:10.1029/2007JD009615

    Google Scholar 

  • Ghude SD, Kulkarni SH, Kulkarni PS, Kanawade VP, Fadnavis S, Pokhrel S, Jena C, Beig G, Bortoli D (2011) Anomalous low tropospheric column ozone over Eastern India during the severe drought event of monsoon 2002: a case study. Environ Sci Poll Res 18:1442–1455. doi:10.1007/s11356-011-0506-4

    CAS  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Prince Xavier K (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445

    CAS  Google Scholar 

  • Harris NRP, Ancellet G, Bishop L, Hofmann DJ, Kerr JB, McPeters RD, Prendez M, Randel WJ, Staehelin J, Subbaraya BH, Volz-Thomas A, Zawodny J, Zerefos CS (1997) Trends in stratospheric and free tropospheric ozone. J Geophys Res 102:1571–1590

    CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change, Climate Change (IPCC) (2001) The Scientific Basis—Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds). Cambridge Univ Press, New York

  • Intergovernmental Panel on Climate Change, Climate Change (IPCC) (2007) The Physical Science Basis, Summary for Policymakers—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press New York

  • Krishnamurti TN, Chakraborty A, Martin A, Lau WK, Kim KM, Sud Y, Walker G (2009) Impact of Arabian Sea Pollution on the Bay of Bengal winter monsoon rains. J Geophys Res 114:D06213. doi:10.1029/2008JD010679

    Google Scholar 

  • Kulkarni PS, Ghude SD, Bortoli D (2010) Tropospheric ozone (TOR) trend over three major inland Indian cities: Delhi, Hyderabad and Bangalore. Ann Geophys 28:1879–1885

    CAS  Google Scholar 

  • Kunze M, Braesicke P, Langematz U, Stiller G, Bekki S, Brühl C, Chipperfield M, Dameris M, Garcia R, Giorgetta M (2010) Influences of the Indian Summer Monsoon on water vapor and ozone concentrations in the UTLS as simulated by chemistry—climate models. J Clim 23:3525–3544. doi:10.1175/2010JCLI3280.1

    Google Scholar 

  • Labrador LJ, von Kuhlmann R, Lawrence MG (2005) The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCHMPIC. Atmos Chem Phys 5:1815–1834

    CAS  Google Scholar 

  • Lal DM, Pawar SD (2011) Effect of urbanization on lightning over four metropolitan cities of India. Atmos Environ 45:191–196

    CAS  Google Scholar 

  • Lamarque JF, Solomon S (2010) Impact of changes in climate and halocarbons on recent lower stratospheric ozone and temperature trends. J Clim 23:2599–2611. doi:10.1175/2010JCLI3179.1

    Google Scholar 

  • Livesey NJ, Van Snyder W, Read WG, Wagner PA (2006) Retrieval algorithms for the EOS Microwave Limb Sounder (MLS). IEEE Trans Geosci Remote Sens 44(5):1144–1155

    Google Scholar 

  • Logan JA, Megretskaia IA, Miller AJ, Tiao GC, Choi D, Zhang L, Stolarski RS, Labow GJ, Hollandsworth SM, Bodeker GE, Claude H, De Muer D, Kerr JB, Tarasick DW, Oltmans SJ, Johnson B, Schmidlin F, Staehelin J, Viatte P, Uchino O (1999) Trends in vertical distribution of ozone: a comparison of two analyses of ozonesonde data. J Geophys Res 104:26373–26399

    CAS  Google Scholar 

  • Neter J, Wasserman W, Kunter MH (1985) Applied linear statistical models, 2nd edn. RD Irwin, Homewood

    Google Scholar 

  • Nishanth T, Satheesh KMK (2011) Increasing trends of tropospheric ozone and NO2 at the prominent hot spots along the coastal belt of the Arabian Sea in Indian subcontinent. Int J Environ Sci 1(5):860–870

    CAS  Google Scholar 

  • Oltmans SJ, Lefohn AS, Scheel HE, Harris JM, Levy H II, Galbally IE, Brunke E-G, Meyer CP, Lathrop JA, Johnson BJ, Shadwick DS, Cuevas E, Schmidlin FJ, Tarasick DW, Claude H, Kerr JB, Uchino O, Mohnen V (1998) Trends of ozone in the troposphere. Geophys Res Lett 25:139–142

    CAS  Google Scholar 

  • Ott LE, Pickering KE, Stenchikov GL, Allen DJ, DeCaria AJ, Ridley B, Lin RF, Lang S, Tao WK (2010) Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J Geophys Res 115:D04301. doi:10.1029/2009JD011880

    Google Scholar 

  • Pan L, Solomon S, Randel WJ, Lamarque JF, Hess P, Gille JC, Chiou EW, McCormick P (1997) Hemispheric asymmetry and seasonal variations of the lowermost stratospheric water vapor and ozone derived from SAGE II data. J Geophys Res 102(D23):28177–28184

    CAS  Google Scholar 

  • Park M, Randel WJ, Emmons LK, Livesey NJ (2009) Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J Geophys Res 114:D08303

    Google Scholar 

  • Phadnis MJ, Levy H II, Moxim WJ (2002) On the evolution of pollution from South and Southeast Asia during the winterspring monsoon. J Geophys Res 107(D24):4790. doi:10.1029/2002JD002190

    Google Scholar 

  • Randel WJ, Cobb JB (1994) Coherent variations of monthly mean total ozone and lower stratospheric temperature. J Geophys Res 99:5433–5477

    CAS  Google Scholar 

  • Randel WJ, Thompson AM (2011) Interannual variability and trends in tropical ozone derived from SAGE II satellite data and SHADOZ ozonesondes. J Geophys Res 116:D07303. doi:10.1029/2010JD015195

    Google Scholar 

  • Randel WJ, Wu F (2007) A stratospheric ozone profile data set for 1979–2005: variability, trends, and comparisons with column ozone data. J Geophys Res 112:D06313. doi:10.1029/2006JD007339

    Google Scholar 

  • Randel WJ, Stolarski RS, Cunnold DM, Logan JA, Newchurch MJ, Zawodny JM (1999) Trends in the vertical distribution of ozone. Science 285:1689–1692

    CAS  Google Scholar 

  • Randel WJ, Park M, Emmons L, Kinnison D, Bernath P, Walker KA, Boone C, Pumphrey H (2010) Asian monsoon transport of pollution to the stratosphere. Science 328(5978):611–613. doi:10.1126/science.1182274

    CAS  Google Scholar 

  • Russell JM, Gordley LL, Park JH, Drayson SR, Tuck AF, Harries JE, Cicerone RJ, Crutzen PJ, Frederick JE (1993) The halogen occultation experiment. J Geophys Res 89:5115–5124

    Google Scholar 

  • Saraf N, Beig G (2004) Long term trends in tropospheric ozone over the Indian tropical region. Geophys Res Lett 31:L05101. doi:10.1029/2003GL018516

    Google Scholar 

  • Saunois M, Mari C, Thouret V (2008) An idealized two dimensional approach to study the impact of the West African monsoon on the meridional gradient of tropospheric ozone. J Geophys Res 113:D07306. doi:10.1029/2007JD008707

    Google Scholar 

  • Shreedharan CR (1968) An Indian electrochemical ozonesonde. J Phys E Sci Instrum 2:995–997

    Google Scholar 

  • Sigmond M, Meloen J, Siegmund PC (2000) Stratosphere-troposphere exchange in an extra tropical cyclone, calculated with a Lagrangian method. Ann Geophysicae 18:573–582

    CAS  Google Scholar 

  • Smit HGJ, Straeter W (1996) JOSIE: The 1996 WMO international intercomparison of ozonesonde under quasi flight conditions in the environmental simulation chamber at Julich. In: Proceedings of XVIII Quadrennial Ozone Symposium. In: Bojkov R, Visconti G Int Ozone Comm, Int Assoc Meteorol Atmos Sci, Toronto

  • Staehelin J, Harris NRP, Appenzeller C, Eberhard J (2001) Ozone trends: a review. Rev Geophys 39:231–290

    CAS  Google Scholar 

  • Stenke A, Grewe V (2004) Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry. Atmos Chem Phys Discuss 4:6559–6602

    Google Scholar 

  • Terao Y, Logan JA (2007) Consistency of time series and trends of stratospheric ozone as seen by ozonesondes, SAGE II, HALOE, and SBUV(/2). J Geophys Res 112:D06310. doi:10.1029/2006JD007667

    Google Scholar 

  • Tian WS, Chipperfield MP, Lu DR (2009) Impact of increasing stratospheric water vapour on ozone depletion and temperature change. Adv Atmos Sci 26(3):432–437. doi:10.1007/s00376-009-0423-3

    Google Scholar 

  • Wang PH, McCormick MP, Poole LR, Chu WP, Yue GK, Kent GS, Skeens KM (1994) Tropical high cloud characteristics derived from SAGE II extinction measurements. Atmos Res 34:53–83

    Google Scholar 

  • Wang PH, Kent GS, Yue GK, Powell KA, Poole LR, Steele SM (1998) Simulation of SAGE II tropical particulate extinctions near the tropopause using a simple microphysical model. OSA Tech Dig Cirrus, pp 78–80

  • Wang PH, Minnis P, Wielicki BA, Wong T, Vann LB (2002) Satellite observations of long-term changes in tropical cloud and outgoing longwave radiation from 1985 to 1998. Geophys Res Lett 29:1397. doi:10.1029/2001GL01426.4

    Google Scholar 

  • Wang Y, Konopka P, Liu Y, Chen H, Müller R, Plöger F, Riese M, Cai Z, Lü D (2012) Tropospheric ozone trend over Beijing from 2002–2010: ozonesonde measurements and modeling analysis. Atmos Chem Phys 12:8389–8399. doi:10.5194/acp-12-8389-2012

    CAS  Google Scholar 

  • Waters JW et al (2006) The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite. IEEE Trans Geosci Remote Sens 44:1075–1092

    Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    CAS  Google Scholar 

  • WMO/UNEP, Scientific Assessment of Ozone Depletion (2010) Prepared by the scientific assessment panel of the Montreal protocol on substances that deplete the ozone layer

  • World Meteorological Organization (WMO) (1994) Third WMO inter-comparison of the ozonesonde used in the Global Ozone Observing System (Vanscoy Canada 13–24 May 1991), Global Atmos Watch Rep 27, Geneva Switzerland

  • Yu J, Wang Y (2009) Response of tropical cyclone potential intensity over the north Indian Ocean to global warming. Geophys Res Lett 36:L03709. doi:10.1029/2008GL03674

    Google Scholar 

Download references

Acknowledgments

We thank NASA and NOAA for the SAGE II, HALOE and MLS data sets. We also acknowledge use of the ECMWF data which was obtained via the BADC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fadnavis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadnavis, S., Dhomse, S., Ghude, S. et al. Ozone trends in the vertical structure of Upper Troposphere and Lower stratosphere over the Indian monsoon region. Int. J. Environ. Sci. Technol. 11, 529–542 (2014). https://doi.org/10.1007/s13762-013-0258-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0258-4

Keywords

Navigation