Skip to main content

Advertisement

Log in

On the Unique Perspective of Paleontology in the Study of Developmental Evolution and Biases

  • Thematic Issue Article: Emergence of Shape
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

The growing interest and major advances of the last decades in evolutionary developmental biology (EvoDevo) have led to the recognition of the incompleteness of the Modern Synthesis of evolutionary theory. Here we discuss how paleontology makes significant contributions to integrate evolution and development. First, extinct organisms often inform us about developmental processes by showing a combination of features unrecorded in living species. We illustrate this point using the vertebrate fossil record and studies relating bone ossification to life history traits. Second, we discuss exceptionally preserved fossils that document rare ontogenetic sequences and illustrate this case with the patterns of heterochrony observed in Cambrian crustacean larvae preserved three-dimensionally. Third, most fossils potentially document the evolutionary patterns of allometry and modularity, as well as some of the (paleo)ecological factors that had influenced them. The temporal persistence of adaptive patterns in rodent evolution serves to address the importance of ecological constraints in evolution. Fourth, we discuss how the macroevolutionary patterns observed in the tetrapod limb, in the mammal molar proportions, and in the molluscan shell provide independent tests of the validity of morphogenetic models proposed on living species. Reciprocally, these macroevolutionary patterns often act as a source of inspiration to investigate the underlying rules of development, because, at the end, they are the patterns that the neo-Darwinian theory was unable to account for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams MB (1980) Severtsov and Schmalhausen: Russian morphology and the evolutionary synthesis. In: Mayr E, Provine WB (eds) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, MA, pp 193–225

    Google Scholar 

  • Alberch P (1980) Ontogenesis and morphological diversification. Am Zool 20:653–667

    Google Scholar 

  • Alberch P (1989) The logic of monsters: evidence for internal constraint in development and evolution. Geobios (Lyon) 22(Suppl 2):21–57

    Article  Google Scholar 

  • Alberch P, Gale EA (1985) A developmental analysis of an evolutionary trend: digital reduction in Amphibians. Evolution 39:8–23

    Article  Google Scholar 

  • Amundson R (1994) Two concepts of constraint: adaptationism and the challenge from developmental biology. Philos Sci 61:556–578

    Article  Google Scholar 

  • Andrews HE, Brower JC, Gould SJ, Reyment RA (1974) Growth and variation in Eurypterus remipes DeKay. Bull Geol Inst Univ Upsala N.S. 4:81–114

    Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builder. Proc Natl Acad Sci USA 105:17442–17446

    Article  Google Scholar 

  • Arnold SJ (1992) Constraints on phenotypic evolution. Am Nat 140:85–107

    Article  Google Scholar 

  • Arnold SJ, Bürger R, Hohenlohe PA, Ajie BC, Jones AG (2008) Understanding the evolution and stability of the G-matrix. Evolution 62:2451–2461

    Article  Google Scholar 

  • Arthur W (2004) The effect of development on the direction of evolution: toward a twenty-first century consensus. Evol Dev 6:282–288

    Article  Google Scholar 

  • Barrande J (1852) Systême Silurien du centre de la Bohême. Iére partie. Recherches paléontologiques. Chez l’auteur et éditeur, Prague-Paris

    Book  Google Scholar 

  • Bayer U (1970) Anomalien bei Ammoniten des Aaleniums und Bajociums und ihre Beziehung zur Lebensweise. N Jahrb Geol Paläontol Abh 135:19–41

    Google Scholar 

  • Berg RL (1960) The ecological significance of correlation Pleiades. Evolution 14:171–180

    Article  Google Scholar 

  • Bond PN, Saunders WB (1989) Sublethal injury and shell repair in upper Mississippian ammonoids. Paleobiologylogy 15:414–428

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Brayard A, Vennin E, Olivier N, Bylund KG, Jenks J, Stephen DA, Bucher H, Hofmann R, Goudemand N, Escarguel G (2011) Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat Geosci 4:693–697

    Article  Google Scholar 

  • Briggs DEG, Sutton MD, Siveter DaJ, Siveter DeJ (2005) Metamorphosis in a Silurian barnacle. Proc R Soc Lond B 272:2365–2369

    Article  Google Scholar 

  • Bucher H (1997) Caractères périodiques et mode de croissance des ammonites: comparaison avec les gastéropodes. Geobios Mém Spéc 20:85–99

    Article  Google Scholar 

  • Bucher H, Guex J (1990) Rythmes de croissance chez les ammonites triasiques. Bull Lab Géol Miner Géophys Mus Geol 308:191–209

    Google Scholar 

  • Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiologylogy. Plenum Press, New York, pp 407–461

    Chapter  Google Scholar 

  • Budd GE (2006) On the origin and evolution of major morphological characters. Biol Rev 81:601–628

    Article  Google Scholar 

  • Burnaby TP (1966) Allometric growth of ammonoid shells: a generalization of logarithmic spiral. Nature 209:904–906

    Article  Google Scholar 

  • Callebaut W, Raskin-Gutman D (eds) (2005) Modularity: understanding the development and evolution of natural complex systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Charlesworth B, Lande R, Slatkin M (1982) A neo-Darwinian commentary on macroevolution. Evolution 36:474–498

    Article  Google Scholar 

  • Chatterton BDE, Speyer SE (1989) Larval ecology, life history strategies and patterns of extinction and survivorship among Ordovician trilobites. Paleobiologylogy 15:118–132

    Google Scholar 

  • Chatterton BDE, Siveter DJ, Edgecombe GD, Hunt AS (1990) Larvae and relationships of the Calymenina (Trilobita). J Paleontol 64:255–277

    Google Scholar 

  • Chatterton BDE, Edgecombe GD, Speyer SE, Hunt AS, Fortey RA (1994) Ontogeny and relationships of Trinucleoidea (Trilobita). J Paleontol 68:523–540

    Google Scholar 

  • Checa AG, Jimenez–Jimenez AP (1997) Regulation of spiral growth in planorbid gastropods. Lethaia 30:257–269

    Article  Google Scholar 

  • Checa A, Company M, Sandoval J, Weitschat W (1996) Covariation of morphological characters in the Triassic ammonoid Czekanowskites rieberi. Lethaia 29:225–235

    Article  Google Scholar 

  • Checa AG, Jimenez–Jimenez AP, Rivas P (1998) Regulation of spiral coiling in the terrestrial gastropod Sphincterochila: an experimental test of the road-holding model. J Morphol 235:249–257

    Article  Google Scholar 

  • Checa AG, Okamoto T, Keupp H (2002) Abnormalities as natural experiments: a morphogenetic model for coiling regulation in planispiral ammonites. Paleobiology 28:127–138

    Article  Google Scholar 

  • Cheverud JM (1984) Quantitative genetics and developmental constraints on evolution by selection. J Theor Biol 110:155–171

    Article  Google Scholar 

  • Chinsamy-Turan A (2005) The microstructure of dinosaur bone: deciphering biology with fine-scale techniques. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Chirat R, Enay R, Hantzpergue P, Mangold C (2008) Developmental integration related to buoyancy control in Nautiloids: evidence from unusual septal approximation and ontogenetic allometries in a Jurassic species. Palaeontology 51:251–261

    Article  Google Scholar 

  • Clarkson ENK, Ahlberg P (2002) Ontogeny and structure of a new, miniaturised and spiny olenid trilobite from Southern Sweden. Palaeontology 45:1–22

    Article  Google Scholar 

  • Cloutier R (2010) The fossil record of fish ontogenies: insights into developmental patterns and processes. Semin Cell Dev Biol 21:400–413

    Article  Google Scholar 

  • Coates MI, Clack JA (1990) Polydactyly in the earliest known tetrapod limbs. Nature 347:66–69

    Article  Google Scholar 

  • Cubo J, Laurin M (2011) Perspectives on vertebrate evolution: topics and problems. C R Palevol 10:285–515

    Article  Google Scholar 

  • Cuggy MB (1994) Ontogenetic variation in Silurian eurypterids from Ontario and New York State. Can J Earth Sci 31:728–732

    Article  Google Scholar 

  • Dagys AS, Weitschat W (1993) Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113–121

    Article  Google Scholar 

  • Dagys A, Bucher H, Weitschat W (1999) Intraspecific variation of Parasibirites kolymensis Bychkov (Ammonoidea) from the Lower Triassic (Spathian) of Arctic Asia. Mitt Geol Paläontol Inst Univ Hambg 83:163–178

    Google Scholar 

  • De Baets K, Klug C, Korn D, Landman N (2012) Evolutionary trends in ammonoid embryonal development. Evolution 66:1788–1806

    Article  Google Scholar 

  • de Oliveira FB, Porto A, Marroig G (2009) Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution. J Hum Evol 56:417–430

    Article  Google Scholar 

  • de Ricqlès A, de Buffrénil V (2001) Bone histology, heterochronies and the return of tetrapods to life in water: where are we? In: Mazin J-M, Buffrénil Vd (eds) Secondary adaptations of tetrapods to life in water. Friedrich Pfeil, München, pp 289–310

    Google Scholar 

  • Dean MC (2010) Retrieving chronological age from dental remains of early fossil Hominins to reconstruct human growth in the past. Philos Trans R Soc B 365:3397–3410

    Article  Google Scholar 

  • Delfino M, Sánchez-Villagra MR (2010) A survey of the rock record of reptilian ontogeny. Semin Cell Dev Biol 21:432–440

    Article  Google Scholar 

  • Dong X (2007) Developmental sequence of Cambrian embryo Markuelia. Chin Sci Bull 52:929–935

    Article  Google Scholar 

  • Dong X, Donoghue PCJ, Cheng H, Liu J (2004) Fossil embryos from the middle and late Cambrian period of Hunan, South China. Nature 427:237–240

    Article  Google Scholar 

  • Donoghue PCJ, Bengston S, Dong XP, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Peng F, Stampanoni M (2006a) Synchroton X-ray tomographic microscopy of fossil embryos. Nature 442:680–683

    Article  Google Scholar 

  • Donoghue PCJ, Kouchinsky A, Waloszek D, Bengtson S, Dong X, Valkov AK, Cunningham JA, Repetski JE (2006b) Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evol Dev 8:232–238

    Article  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

    Google Scholar 

  • Dubois E (1897) Sur le rapport de l’encéphale avec la grandeur du corps chez les Mammifères. Bull Mémo Soc d’Anthropol Paris, 4e série 8:337–376

    Article  Google Scholar 

  • Duncan IJ, Briggs DEG, Archer M (1998) Three-dimensionally mineralized insects and millipedes from the Tertiary of Riversleigh, Queensland, Australia. Palaeontology 41:835–851

    Google Scholar 

  • Eble GJ (1999) On the dual nature of chance in evolutionary biology and Paleobiology. Paleobiology 25:75–87

    Google Scholar 

  • Eble GJ (2004) The macroevolution of phenotypic integration. In: Pigliucci M, Preston KA (eds) Phenotypic integration. Oxford University Press, New York, pp 253–273

    Google Scholar 

  • Edgecombe GD, Speyer SE, Chatterton BDE (1988) Protaspid larvae and phylogenetics of encrinurid trilobites. J Paleontol 62:779–799

    Google Scholar 

  • Edgecombe GD, Chatterton BDE, Vaccari NE, Waisfeld BG (1997) Ontogeny of the proetoid trilobite Stenoblepharum, and relationships of a new species from the Upper Ordovician of Argentina. J Paleontol 71:419–433

    Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Erickson GM (2005) Assessing dinosaur growth patterns: a microscopic revolution. Trends Ecol Evol 20:677–684

    Article  Google Scholar 

  • Erickson GM, Makovicky PJ, Inouye BD, Zhou C-F, Gao K (2009) Life table for Psittacosaurus lujiatunensis: the first glimpse into ornithischian dinosaur population biology. Anat Rec 292:1514–1521

    Article  Google Scholar 

  • Erwin DH (2000) Macroevolution is more than repeated rounds of microevolution. Evol Dev 2:78–84

    Article  Google Scholar 

  • Fröbisch NB, Olori J, Schoch RR, Witzmann F (2010) Amphibian development in the fossil record. Semin Cell Dev Biol 21:424–431

    Article  Google Scholar 

  • Geiger M, Wilson LAB, Costeur L, Sánchez R, Sánchez-Villagra MR (in press) Diversity and growth in giant caviomorphs from the northern neotropics: a study of femoral variation in Phoberomys (Rodentia). J Vertebr Paleontol

  • Gerber S, Hopkins MJ (2011) Mosaic heterochrony and evolutionary modularity: the trilobite genus Zacanthopsis as a case study. Evolution 65:3241–3252

    Article  Google Scholar 

  • Gilbert SF (2003) The morphogenesis of evolutionary developmental biology. Int J Dev Biol 47:467–477

    Google Scholar 

  • Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372

    Article  Google Scholar 

  • Goodwin BC (1988) Problems and prospects in morphogenesis. Experientia 44:633–637

    Article  Google Scholar 

  • Goswami A (2006) Cranial modularity shifts during mammalian evolution. Am Nat 168:270–280

    Article  Google Scholar 

  • Goswami A, Polly PD (2010) Methods for studying morphological integration and modularity. In: Alroy J, Hunt G (eds) Quantitative methods in Paleobiology. Paleontological Society Special Publications. Yale University Printing and Publishing, New Haven, pp 213–243

    Google Scholar 

  • Goswami A, Milne N, Wroe S (2011) Biting through constraints: cranial morphology, disparity, and convergence across living and fossil carnivorous mammals. Proc R Soc B 1713:1831–1839

    Article  Google Scholar 

  • Goudemand N, Orchard M, Urdy S, Bucher H, Tafforeau P (2011) Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proc Natl Acad Sci USA 108:8720–8724

    Article  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ (1980) Is a new evolutionary theory emerging? Paleobiology 6:119–130

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc B 205:581–598

    Article  Google Scholar 

  • Gould SJ, Simpson GG (1980) Paleontology, and the Modern Synthesis. In: Mayr E, Provine WB (eds) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, MA, pp 193–225

    Google Scholar 

  • Grantham T (2007) Is macroevolution more than successive rounds of microevolution? Palaeontology 50:75–85

    Article  Google Scholar 

  • Guex J (1967) Contribution à l’étude des blessures chez les ammonites. Bull Lab Géol Miner Géophys Mus Geol 165:1–23

    Google Scholar 

  • Guex J (1968) Sur deux conséquences particulières des traumatismes du manteau des ammonites. Bull Societé Vaud Sci Nat 175:1–11

    Google Scholar 

  • Guex J, Koch A, O’Dogherty L, Bucher H (2003) A morphogenetic explanation of Buckman’s law of covariation. Bull Soc Géol Fr 174:603–606

    Article  Google Scholar 

  • Hall BK (1996) Baupläne, phylotypic stages, and constraint: why there are so few types of animals. Evol Biol 29:215–261

    Google Scholar 

  • Hammer O, Bucher H (1999) Reaction-diffusion processes: application to the morphogenesis of ammonoid ornamentation. Geobios 32:841–852

    Article  Google Scholar 

  • Hammer O, Bucher H (2005a) Buckman’s first law of covariation: a case of proportionality. Lethaia 38:67–72

    Article  Google Scholar 

  • Hammer O, Bucher H (2005b) Models for the morphogenesis of the molluscan shell. Lethaia 38:111–122

    Article  Google Scholar 

  • Haug JT, Maas A, Waloszek D (2009a) Ontogeny of two Cambrian stem crustaceans, †Goticaris longispinosa and †Cambropachycope clarksoni. Palaeontogr Abt A 289:1–43

    Google Scholar 

  • Haug JT, Maas A, Waloszek D, Donoghue PCJ, Bengtson S (2009b) A new species of Markuelia from the Middle Cambrian of Australia. Mem Assoc Australas Palaeontol 37:303–313

    Google Scholar 

  • Haug JT, Maas A, Waloszek D (2010a) †Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth Environ Sci Trans R Soc Edinb 100:311–350

    Article  Google Scholar 

  • Haug JT, Waloszek D, Haug C, Maas A (2010b) High-level phylogenetic analysis using developmental sequences: the Cambrian †Martinssonia elongata, †Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Struct Dev 39:154–173

    Article  Google Scholar 

  • Hautier L, Weisbecker V, Sánchez-Villagra MR, Goswami A, Asher RJ (2010) Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proc Natl Acad Sci USA 107:18903–18908

    Article  Google Scholar 

  • Head JJ, David Polly P (2007) Dissociation of somatic growth from segmentation drives gigantism in snakes. Biol Lett 3:296–298

    Article  Google Scholar 

  • Hoare RD (1991) Ontogeny and variation in Glyptopleura costata (McCoy) (Ostracoda: Mississippian, Chesterian) from Ohio. J Paleontol 65:760–766

    Google Scholar 

  • Hou X, Williams M, Siveter DaJ, Aldridge RJ, Sansom RS (2010) Soft-part anatomy of the early Cambrian bivalved arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida. Proc R Soc B 277:1835–1841

    Article  Google Scholar 

  • Hughes NC (2007) The evolution of trilobite body patterning. Annu Rev Earth Planet Sci 35:401–434

    Article  Google Scholar 

  • Hughes NC, Minelli A, Fusco G (2006) The ontogeny of trilobite segmentation: a comparative approach. Paleobiology 32:602–627

    Article  Google Scholar 

  • Hughes NC, Haug JT, Waloszek D (2008) Basal euarthropod development: a fossil-based perspective. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 281–298

    Chapter  Google Scholar 

  • Hugi J, Sánchez-Villagra MR (2012) Life history and skeletal adaptations in the Galapagos marine iguana (Amblyrhynchus cristatus) as reconstructed with bone histological data: a comparative study of iguanines. J Herpetol 46:312–324

    Article  Google Scholar 

  • Hugi J, Scheyer TM, Sander PM, Klein N, Sánchez-Villagra MR (2011) Long bone microstructure gives new insights into the life of pachypleurosaurids from the Middle Triassic of Monte San Giorgio, Switzerland/Italy. C R Palevol 10:413–426

    Article  Google Scholar 

  • Humphrey LT (2010) Weaning behaviour in human evolution. Semin Cell Dev Biol 21:453–461

    Article  Google Scholar 

  • Humphrey LT, Dean MC, Jeffries TE, Penn M (2008) Unlocking evidence of early diet from tooth enamel. Proc Natl Acad Sci USA 105:6834–6839

    Article  Google Scholar 

  • Hunt G (2007) The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci USA 104:18404–18408

    Article  Google Scholar 

  • Hutchinson JMC (1989) Control of gastropod shell shape: the role of the preceding whorl. J Theor Biol 140:431–444

    Article  Google Scholar 

  • Huxley JS, Teissier G (1936a) Terminology of relative growth. Nature 137:780–781

    Article  Google Scholar 

  • Huxley JS, Teissier G (1936b) Terminologie et notation dans la description de la croissance relative. C R Seances Soc Biol Fil 121:934–937

    Google Scholar 

  • Illert C (1990) Nipponites mirabilis: a challenge to seashell theory. Nuovo Cimento Soc Ital Fis D 12:1405–1421

    Article  Google Scholar 

  • Jablonski D (2007) Scale and hierarchy in macroevolution. Palaeontology 50:87–109

    Article  Google Scholar 

  • Jablonski D (2010) Origination patterns and multi-level processes in macroevolution. In: Pigliucci M, Müller GB (eds) Evolution, the extended synthesis. MIT Press, Cambridge, MA, pp 335–354

    Google Scholar 

  • Kaneko K (2011) Characterization of stem cells and cancer cells on the basis of gene expression stability, plasticity, and robustness. BioEssays 33:403–413

    Article  Google Scholar 

  • Kauffman SA (1993) The origin of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Kavanagh KD, Evans AR, Jernvall J (2007) Predicting evolutionary patterns of mammalian teeth from development. Nature 449:427–432

    Article  Google Scholar 

  • Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeontol 17:1–94

    Google Scholar 

  • Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420–8427

    Article  Google Scholar 

  • Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115–132

    Article  Google Scholar 

  • Klug C (2001) Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia 34:215–233

    Article  Google Scholar 

  • Köhler M, Moyà-Solà S (2009) Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc Natl Acad Sci USA 106:20354–20358

    Article  Google Scholar 

  • Kolb C, De Vos J, Scheyer TM, Sánchez-Villagra MR (2011) The ontogeny of bone histology in the dwarfed island deer Candiacervus from the Late Pleistocene of Crete. In: Program and Abstracts of the 9th EAVP Annual Meeting, pp 31–32

  • Korn D (2012) Quantification of ontogenetic allometry in ammonoids. Evol Dev 14:501–514

    Article  Google Scholar 

  • Kuratani S (2012) Evolution of the vertebrate jaw from developmental perspectives. Evol Dev 14:76–92

    Google Scholar 

  • Landman NH, Waage KM (1986) Shell abnormalities in scaphitid ammonites. Lethaia 19:211–224

    Article  Google Scholar 

  • Lapique L (1907) Tableau général des poids somatiques et encéphaliques dans les espèces animales. Bull Mémo Soc Anthropol Paris, 5e sér 8:248–269

    Article  Google Scholar 

  • Lee D, Chatterton BDE (1997) Three new proetide trilobite larvae from the Lower Ordovician Garden City Formation in southern Idaho. J Paleontol 71:434–441

    Google Scholar 

  • Lee D, Chatterton BDE (2003) Protaspides of Leiostegium and their implications for membership of the order Corynexochida. Palaeontology 46:431–445

    Article  Google Scholar 

  • Lee D, Chatterton BDE (2005) Protaspides of Upper Cambrian Aphelaspis (Ptychopariida, Trilobita) and related species with their taxonomic implications. Palaeontology 48:1351–1375

    Article  Google Scholar 

  • Leroi AM (2000) The scale independence of evolution. Evol Dev 2:67–77

    Article  Google Scholar 

  • Lerosey-Aubril R, Feist R (2005a) First Carboniferous protaspid larvae (Trilobita). J Paleontol 79:702–718

    Article  Google Scholar 

  • Lerosey-Aubril R, Feist R (2005b) Ontogeny of a new cyrtosymboline trilobite from the Famennian of Morocco. Acta Palaeontol Pol 50:449–464

    Google Scholar 

  • Leutze WP (1958) Eurypterids from the Silurian Tymochtee Dolomite of Ohio. J Paleontol 32:937–942

    Google Scholar 

  • Li H, Huang Z, Gai J, Wu S, Zeng Y, Li Q, Wu R (2007) A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry. PLoS ONE 2:e1245

    Article  Google Scholar 

  • Linsley RM (1977) Some “laws” of gastropod shell form. Paleobiology 3:196–206

    Google Scholar 

  • Linsley RM (1978) Shell form and the evolution of gastropods. Am Sci 66:432–441

    Google Scholar 

  • Luo Z-X (2007) Transformation and diversification in the early mammalian evolution. Nature 450:1011–1019

    Article  Google Scholar 

  • Luo Z-X, Chen P-J, Li G, Chen M (2007) A new eutriconodont mammal and evolutionary development of early mammals. Nature 446:288–293

    Article  Google Scholar 

  • Maas A, Braun A, Dong X, Donoghue PCJ, Müller KJ, Olempska E, Repetski JE, Siveter DJ, Stein M, Waloszek D (2006) The ‘Orsten’: more than a Cambrian Konservat-Lagerstatte yielding exceptional preservation. Palaeoworld 15:266–282

    Article  Google Scholar 

  • Maas A, Waloszek D, Haug JT, Müller KJ (2007) A possible larval roundworm from the Cambrian ‘Orsten’ and its bearing on the phylogeny of Cycloneuralia. Mem Assoc Australas Palaeontol 34:499–519

    Google Scholar 

  • Maas A, Waloszek D, Haug JT, Müller KJ (2009) Loricate larvae (Scalidophora) from the Middle Cambrian of Australia. Mem Assoc Australas Palaeontol 37:281–302

    Google Scholar 

  • Maisey JG, de Carvalho MdGP (1995) First records of fossil sergestid decapods and fossil brachyuran crab larvae (Arthropoda, Crustacea), with remarks on some supposed palaemonid fossils, from the Santana Formation (Aptian-Albian, NE Brazil). Am Mus Novit 3132:1–17

    Google Scholar 

  • Maness TR, Kaesler RL (1987) Ontogenetic changes in the carapace of Tyrrhenocythere amnicola (Sars) a hemicytherid ostracode. Univ Kans Paleontol Contrib 118:1–15

    Google Scholar 

  • Marroig G, Cheverud JM (2004) Cranial evolution in sakis (Pithecia, Platyrrhini) I: interspecific differentiation and allometric patterns. Am J Phys Anthropol 125:266–278

    Article  Google Scholar 

  • Marroig G, Shirai LT, Porto A, de Oliveira FB, De Conto V (2009) The evolution of modularity in the mammalian skull II: evolutionary consequences. Evol Biol 36:136–148

    Article  Google Scholar 

  • Maynard Smith J, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. Q Rev Biol 60:265–287

    Article  Google Scholar 

  • Mazzetta GV, Christiansen P, Fariña RA (2004) Giants and bizarres: body size of some southern South American Cretaceous dinosaurs. Hist Biol 65:1–13

    Google Scholar 

  • McGhee GR (1999) Theoretical morphology. Columbia University Press, New York

    Google Scholar 

  • McNamara KJ (1978) Paedomorphosis in Scottish olenellid trilobites (Early Cambrian). Palaeontology 21:635–655

    Google Scholar 

  • Mitgutsch C, Richardson MK, Jiménez R, Martín JE, Kondrashov P, de Bakker MAG, Sánchez-Villagra MR (2012) Circumventing the pentadactyly ‘constraint’: autopodial recruitment of pre-axial structures in true moles. Biol Lett 8:74–77

    Article  Google Scholar 

  • Monnet C, Bucher H (2005) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Foss Strat 52:1–60

    Google Scholar 

  • Monnet C, Zollikofer CP, Bucher H, Goudemand N (2009) Three-dimensional morphometric ontogeny of mollusc shells by micro-computed tomography and geometric analysis. Palaeontol Electron 12:12A

    Google Scholar 

  • Morita R (1991a) Finite element analysis of a double membrane tube (DMS-tube) and its implication for gastropod shell morphology. J Morphol 207:81–92

    Article  Google Scholar 

  • Morita R (1991b) Mechanical constraints on aperture form in gastropods. J Morphol 207:93–102

    Article  Google Scholar 

  • Morita R (1993) Development mechanics of retractor muscles and the “Dead Spiral Model” in gastropod shell morphogenesis. N Jahrb Geol Paläontol Abh 190:191–217

    Google Scholar 

  • Morita R (2003) Why do univalve shells of gastropods coil so tightly? A head-foot guidance model of shell growth and its implication on developmental constraints. In: Sekimura T, Noji S, Ueno N, Maini PK (eds) Morphogenesis and pattern formation in biological systems: experiments and models. Springer, Tokyo, pp 345–354

    Chapter  Google Scholar 

  • Müller KJ, Hinz-Schallreuter I (1993) Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology 36:549–592

    Google Scholar 

  • Müller KJ, Walossek D (1986) Arthropod larvae from the Upper Cambrian of Sweden. Trans R Soc Edinb Earth Sci 77:157–179

    Article  Google Scholar 

  • Müller KJ, Walossek D (1987) Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Foss Strat 19:1–124

    Google Scholar 

  • Müller KJ, Walossek D (1988) External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. Foss Strat 23:1–70

    Google Scholar 

  • Müller J, Scheyer TM, Barrett P, Werneburg I, Head JJ, Ericson PGP, Pol D, Sánchez-Villagra MR (2010) Homeotic effects, somitogenesis, and the evolution of vertebral numbers in recent and fossil amniotes. Proc Natl Acad Sci USA 107:2118–2123

    Article  Google Scholar 

  • Murdock DJE, Donoghue PCJ (2011) Evolutionary origins of animal skeletal biomineralization. Cells Tissues Organs 194:98–102

    Article  Google Scholar 

  • Nützel A, Frýda J, Yancey TE, Anderson JR (2007) Larval shells of Late Palaeozoic naticopsid gastropods (Neritopsoidea: Neritimorpha) with a discussion of the early neritimorph evolution. Paläontol Z 81:213–228

    Article  Google Scholar 

  • O’Higgins P (2000) Quantitative approaches to the study of craniofacial growth and evolution: advances in morphometric techniques: development, growth and evolution. Academic Press, San Diego

    Google Scholar 

  • Okamoto T (1988a) Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:35–52

    Google Scholar 

  • Okamoto T (1988b) Developmental regulation and morphological saltation in the heteromorph ammonite Nipponite. Paleobiology 14:272–286

    Google Scholar 

  • Olempska E (2004) Late Triassic spinicaudatan crustaceans from southwestern Poland. Acta Palaeontol Pol 49:429–442

    Google Scholar 

  • Olsson L, Levit GS, Hoßfeld U (2010) Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions. Naturwissenschaften 97:951–969

    Article  Google Scholar 

  • Oster GF, Shubin N, Murray JD, Alberch P (1988) Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution 42:862–884

    Article  Google Scholar 

  • Peterson KJ, Summons RE, Donoghue PCJ (2007) Molecular palaeobiology. Palaeontology 50:775–809

    Article  Google Scholar 

  • Pigliucci M, Müller GB (2010) Evolution. The extended synthesis. MIT Press, Cambridge, MA

    Google Scholar 

  • Polly PD (2007) Development with a bite. Nature 449:413–415

    Article  Google Scholar 

  • Ponce de Léon MS, Zollikofer CP (2001) Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412:534–538

    Article  Google Scholar 

  • Raff RA (2007) Written in stone: fossils, genes, and evo–devo. Nat Rev Genet 8:911–920

    Article  Google Scholar 

  • Raff RA, Kaufman TC (1983) Embryos, genes, and evolution: the developmental-genetic basis of evolutionary change. Macmillan, New York

    Google Scholar 

  • Raup DM (1961) The geometry of coiling in gastropods. Proc Natl Acad Sci USA 47:602–609

    Article  Google Scholar 

  • Raup DM (1966) Geometric analysis of shell coiling: some general problems. J Paleontol 40:1178–1190

    Google Scholar 

  • Raup DM, Michelson A (1965) Theoretical morphology of the coiled shell. Science 147:1294–1295

    Article  Google Scholar 

  • Rensch B (1959) Evolution above the species level. Wiley, New York

    Google Scholar 

  • Renvoisé E, Evans AR, Jebrane A, Labruère C, Laffont R, Montuire S (2009) Evolution of mammal tooth patterns: new insights from a developmental prediction model. Evolution 63:1327–1340

    Article  Google Scholar 

  • Revell LJ (2007) The G matrix under fluctuating correlational mutation and selection. Evolution 61:1857–1872

    Article  Google Scholar 

  • Rice SH (1998) The bio-geometry of mollusc shells. Paleobiology 24:133–149

    Google Scholar 

  • Rieber H (1972) Die Triasfauna der Tessiner Kalkalpen. XXII. Cephalopoden aus der Grenzbitumenzone (Mittelere Trias) des Monte San Giorgio (Kanton Tessin, Schweiz). Schweiz Paläontol Abh 93:1–95

    Google Scholar 

  • Romano C, Kogan I, Jenks J, Jerjen I, Brinkmann W (2012) Saurichthys and other fossils from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA) with a discussion of saurichthyid palaeogeography and evolution. Bull Geosci 87:543–570

    Article  Google Scholar 

  • Salazar-Ciudad I (2006) Developmental constraints vs. variational properties: how pattern formation can help to understand evolution and development? J Exp Zool B 306B:107–125

    Article  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464:583–586

    Article  Google Scholar 

  • Sánchez-Villagra MR (2010) Developmental palaeontology in synapsids: the rock record of ontogeny in mammals and their closest relatives. Proc R Soc B 277:1139–1147

    Article  Google Scholar 

  • Sánchez-Villagra MR (2012) Embryos in deep time. University of California Press, San Francisco

    Book  Google Scholar 

  • Sander PM, Klein N (2005) Developmental plasticity in the life history of a prosauropod dinosaur. Science 310:1800–1802

    Article  Google Scholar 

  • Savazzi E (1990) Biological aspects of theoretical shell morphology. Lethaia 23:195–212

    Article  Google Scholar 

  • Scheyer TM (2007) Skeletal histology of the dermal armor of the Placodontia: the occurrence of ‘postcranial fibro-cartilaginous bone’ and its developmental implications. J Anat 211:737–753

    Article  Google Scholar 

  • Scheyer TM, Klein N, Sander PM (2010) Developmental palaeontology of Reptilia as revealed by histological studies. Semin Cell Dev Biol 21:462–470

    Article  Google Scholar 

  • Scheyer TM, Neenan JM, Renesto S, Saller F, Hagdorn H, Furrer H, Rieppel O, Tintori A (2011) Revised paleoecology of placodonts—with a comment on ‘The shallow marine placodont Cyamodus of the central European Germanic Basin: its evolution, Paleobiologygeography and paleoecology’ by CG Diedrich. Hist Biol 24:257–267

    Google Scholar 

  • Scheyer TM, Werneburg I, Mitgutsch C, Delfino M, Sánchez-Villagra MR (2012) Three ways to tackle the turtle: integrating fossils, comparative embryology and microanatomy. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification: vertebrate Paleobiologylogy and paleoanthropology. Springer, Dordrecht, pp 63–70

    Google Scholar 

  • Schmalhausen II (1949) Factors of evolution: the theory of stabilizing selection. Blakiston, Philadelphia

    Google Scholar 

  • Schmid L (2012) Reconstructing the molecular underpinnings of morphological diversification. A case study of the Triassic fish Saurichthys. In: Asher RJ, Müller J (eds) From clone to bone: the synergy of morphological and molecular tools in Paleobiologylogy. Cambridge University Press, Cambridge, pp 135–165

    Chapter  Google Scholar 

  • Schmid L, Sánchez-Villagra MR (2010) The potential genetic bases of morphological evolution in the Triassic fish Saurichthys. J Exp Zool B 314B:519–526

    Article  Google Scholar 

  • Schoch RR (2006) Skull ontogeny: developmental patterns of fishes conserved aross major developmental stages. Evol Dev 8:524–536

    Article  Google Scholar 

  • Schoch RR (2009) Developmental evolution as a response to diverse lake habitats in Paleozoic amphibians. Evolution 63:2738–2749

    Article  Google Scholar 

  • Sears KE, Goswami A, Flynn JJ, Niswander LA (2007) The correlated evolution of Runx2 tandem repeats, transcriptional activity and facial length in Carnivora. Evol Dev 9:555–565

    Article  Google Scholar 

  • Seilacher A (1970) Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393–396

    Article  Google Scholar 

  • Severtsov AN (1912) Etiudy po teorii evoliutsii: individual’noe razvitie i evoliutsiia. [Studies on the theory of evolution: individual development and evolution]. Gosizdat, Kiev

  • Shirai LT, Marroig G (2010) Skull modularity in neotropical marsupials and monkeys: size variation and evolutionary constraint and flexibility. J Exp Zool B 314B:663–683

    Article  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    Article  Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Smith RJ (2000) Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil. Palaeontology 43:63–98

    Article  Google Scholar 

  • Spjeldnaes N (1951) Ontogeny of Beyrichia jonesi Boll. J Paleontol 26:745–755

    Google Scholar 

  • Steiner M, Zhu M, Li G, Qian Y, Erdtmann B (2004) New Early Cambrian bilaterian embryos and larvae from China. Geology 32:833–836

    Article  Google Scholar 

  • Stolarski J, Meibom A, Przeniosto R, Mazur M (2007) A Cretaceous Scleractinian coral with a calcitic skeleton. Science 318:92–94

    Article  Google Scholar 

  • Sumrall CD, Wray GA (2007) Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33:149–163

    Article  Google Scholar 

  • Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger J–J, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A 83:195–202

    Article  Google Scholar 

  • Tanaka G, Smith RJ, Siveter DJ, Parker AR (2009) Three-dimensionally preserved decapod larval compound eyes from the Cretaceous Santana Formation of Brazil. Zool Sci 26:846–850

    Article  Google Scholar 

  • Tasch P (1961) Pemphilimnadiopseidae, a new family of fossil conchostracans. J Paleontol 35:1117–1120

    Google Scholar 

  • Thewissen J, Cooper L, Behringer R (2012) Developmental biology enriches paleontology. J Vertebr Paleontol 32:1223–1234

    Article  Google Scholar 

  • Thompson D’A W (1917) On growth and form, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Tinn O, Meidla T (2003) Ontogeny and thanatocoenoses of early Middle Ordovician palaeocope ostracode species Brezelina palmata (Krause, 1889) and Ogmoopsis bocki (Opik, 1935). J Paleontol 77:64–72

    Article  Google Scholar 

  • Tinn O, Meidla T (2004) Phylogenetic relationships of Early-Middle Ordovician ostracods of Baltoscandia. Palaeontol 47:199–221

    Article  Google Scholar 

  • Tokita M, Iwai N (2010) Development of the pseudothumb in frogs. Biol Lett 6:517–520

    Article  Google Scholar 

  • Tripp RP, Evitt WR (1986) Silicified trilobites of the family Asaphidae from the Middle Ordovician of Virginia. Palaeontology 29:705–724

    Google Scholar 

  • Ubukata T (2003) Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study. Paleobiology 29:480–491

    Article  Google Scholar 

  • Urdy S (2012) On the evolution of morphogenetic models: mechano-chemical interactions and an integrated view of cell differentiation, growth, pattern formation and morphogenesis. Biol Rev 87:786–803

    Article  Google Scholar 

  • Urdy S, Chirat R (2006) Snail shell coiling (re-)evolution and the evo–devo revolution. J Zool Syst Evol Res 44:1–7

    Article  Google Scholar 

  • Urdy S, Goudemand N, Bucher H, Chirat R (2010a) Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Zool B 314B:280–302

    Article  Google Scholar 

  • Urdy S, Goudemand N, Bucher H, Chirat R (2010b) Growth dependent phenotypic variation of molluscan shell shape: implications for allometric data interpretation. J Exp Zool B 314B:303–326

    Article  Google Scholar 

  • Vassallo AI, Mora MS (2007) Interspecific scaling and ontogenetic growth patterns of the skull in living and fossil ctenomyid and octodontid rodents (Caviomorpha: Octodontoidea). In: Kelt DA, Lessa E, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honouring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology, Berkeley, pp 945–968

    Google Scholar 

  • Vermeij GJ (2002) Characters in context: molluscan shells and the forces that mold them. Paleobiology 28:41–54

    Article  Google Scholar 

  • Verzi DH (2008) Phylogeny and adaptive diversity of rodents of the family Ctenomyidae (Caviomorpha): delimiting lineages and genera in the fossil record. J Zool 274:386–394

    Article  Google Scholar 

  • Verzi DH, Álvarez A, Olivares I, Morgan CC, Vassallo AI (2010) Ontogenetic trajectories of key morphofunctional cranial traits in South American subterranean ctenomyid rodents. J Mammal 91:1508–1516

    Article  Google Scholar 

  • Vrba ES (1983) Macroevolutionary trends: new perspective on the roles of adaptation and incidental effect. Science 221:387–389

    Article  Google Scholar 

  • Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution 50:967–976

    Article  Google Scholar 

  • Wagner GP, Larsson HCE (2003) What is the promise of developmental evolution? III. The crucible of developmental evolution. J Exp Zool B 300B:1–4

    Article  Google Scholar 

  • Wake DB (1991) Homoplasy: the result of natural selection, or evidence of design limitations? Am Nat 138:543–567

    Article  Google Scholar 

  • Walossek D (1993) The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Foss Strat 32:1–202

    Google Scholar 

  • Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446

    Article  Google Scholar 

  • Webster G, Goodwin BC (1982) The origin of species: a structuralist approach. J Soc Biol Struct 5:15–47

    Article  Google Scholar 

  • Webster M, Zelditch ML (2011) Modularity of a Cambrian ptychoparioid trilobite cranidium. Evol Dev 13:96–109

    Article  Google Scholar 

  • Weitschat W (1983a) Ostracoden (O. Myodocopida) mit Weichkörper-Erhaltung aus der Unter-Trias von Spitzbergen. Paläontol Z 57:309–323

    Article  Google Scholar 

  • Weitschat W (1983b) On Triadocypris spitzbergensis Weitschat. Stereo Atlas Ostracod Shells 10:127–138

    Google Scholar 

  • Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367

    Article  Google Scholar 

  • West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592

    Article  Google Scholar 

  • Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). N Jahrb Geol Paläontol Abh 124:289–312

    Google Scholar 

  • Williams SH, Kay RF (2001) A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. J Mammal Evol 8:207–229

    Article  Google Scholar 

  • Wilson LAB (2012) Geographic variation in the greater Japanese shrew-mole Urotrichus talpoides: combining morphological and chromosomal patterns. Mammal Biol. doi:10.1016/j.mambio.2012.09.003

  • Wilson LAB (2013) The contribution of developmental palaeontology to extensions of evolutionary theory. Acta Zool (Stockholm) 94. In press. doi:10.1111/j.1463-6395.2011.00539.x

  • Wilson LAB, Sánchez-Villagra MR (2010) Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proc R Soc B 277:1227–1234

    Article  Google Scholar 

  • Wilson LAB, Madden RH, Kay RF, Sánchez-Villagra MR (2012) Testing a developmental model in the fossil record: molar proportions in South American ungulates. Paleobiology 38:308–321

    Article  Google Scholar 

  • Wroe S, Crowther M, Dortch J, Chong J (2004) The size of the largest marsupial and why it matters. Proc R Soc B 271:34–36

    Article  Google Scholar 

  • Young NM, Wagner GP, Hallgrímsson B (2010) Development and the evolvability of human limbs. Proc Natl Acad Sci USA 107:3400–3405

    Article  Google Scholar 

  • Zhang X (2007) Phosphatized bradoriids (Arthropoda) from the Cambrian of China. Palaeontogr Abt A 281:93–173

    Google Scholar 

  • Zhang X, Pratt BR (1993) Early Cambrian ostracode larvae with a univalved carapace. Science 262:93–94

    Article  Google Scholar 

  • Zhang X, Pratt BR (1999) Early Cambrian trilobite larvae and ontogeny of Ichangia ichangensis Chang, 1957 (Protolenidae) from Henan, China. J Paleontol 73:117–128

    Google Scholar 

  • Zhang X, Maas A, Haug JT, Siveter DJ, Waloszek D (2010) A eucrustacean metanauplius from the Lower Cambrian. Curr Biol 20:1075–1079

    Article  Google Scholar 

  • Zhang X, Pratt BR, Shen C (2011) Embryonic development of a middle Cambrian (500 myr old) scalidophoran worm. J Paleontol 85:898–903

    Article  Google Scholar 

  • Zhu J, Zhang YT, Alber MS, Newman SA (2010) Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS ONE 5:e10892

    Article  Google Scholar 

  • Zollikofer CP, Ponce de Leόn MSP (2010) The evolution of hominin ontogenies. Semin Cell Dev Biol 21:441–452

    Article  Google Scholar 

Download references

Acknowledgments

We beg to be excused for the somewhat haphazard nature of the reference list of this article, as some of the topics treated here are very encompassing and have had a long history of investigation and thoughtful contributions. The article has been coordinated by MRSV, and all authors revised and commented on the different sections. MRSV thanks Jeff Schwartz and all those attending the Workshop, “The Evolution of Form,” held at the Konrad Lorenz Institute for Evolution and Cognition, Altenberg, September 2010, for fruitful discussions. SU thanks Hugo Bucher (PIMUZ) for having sampled the specimens illustrated in Figs. 4 (photographs by Noel Podevigne, UCBL) and 5 (photographs by Rosi Roth, PIMUZ), and allowing them to be published here. LABW thanks Andrea Elissamburu, Alejandro Donda, Fredy Carlini, and Diego Verzi for much help in Argentina and access to collections of Actenomys. We thank Z.-X. Luo (University of Chicago) for thoughtful suggestions. JTH was kindly supported by Yale University and by the Alexander von Humboldt Foundation with a Feodor Lynen Research Fellowship for postdoctoral researchers. LABW was supported by a Japanese Society for the Promotion of Science postdoctoral fellowship (PE 10075). SU was supported by the Swiss National Foundation (200021_124784/1 and PA00P3-136478) and the University of Zurich. This work is supported by the Swiss National Science Foundation to MRSV (31003A-133032/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo R. Sánchez-Villagra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urdy, S., Wilson, L.A.B., Haug, J.T. et al. On the Unique Perspective of Paleontology in the Study of Developmental Evolution and Biases. Biol Theory 8, 293–311 (2013). https://doi.org/10.1007/s13752-013-0115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-013-0115-1

Keywords

Navigation