Skip to main content
Log in

Copper hydroxide nanostructure-modified carbon ionic liquid electrode as an efficient voltammetric sensor for detection of metformin: a theoretical and experimental study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The electrocatalytic oxidation of metformin (MET) was investigated at Cu(OH)2 nanoparticle-modified carbon ionic liquid electrode (Cu(OH)2/CILE). This electrode exhibited excellent characteristic for the electrocatalytic oxidation of metformin at the potential of +0.6 V with good sensitivity and selectivity. The presence of Cu(OH)2 nanostructures in the composite electrode leads to the appearance of oxidation peak of MET. Under optimal experimental conditions, the peak current response increased linearly with metformin concentration over the range of 1 µM–4 mM. The detection limit of the method is 0.5 µM. Moreover, the closer look was taken at the electronic properties of MET and its Cu (II) complexes such as frontier molecular orbital (HOMO and LUMO) and binding interaction energies using density functional theory. Effect of pH was also investigated at B3LYP/6-311++g** level. Theoretical results confirmed the experimental evidences of Cu (II) complexation. Therefore, Ease of preparation, wide linear range, low overpotential, high sensitivity and selectivity provide the possibility of applying this method for the detection of MET in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Danaei, M.M. Finucane, Y. Lu, G.M. Singh, M.J. Cowan, C.J. Paciorek, J.K. Lin, F. Farzadfar, Y.H. Khang, G.A. Stevens, M. Rao, M.K. Ali, L.M. Riley, C.A. Robinson, M. Ezzati, Global burden of metabolic risk factors of chronic diseases collaborating group (blood glucose). Lancet 378, 31 (2011)

    Article  CAS  Google Scholar 

  2. S. van Dieren, J.W. Beulens, Y.T. van der Schouw, D.E. Grobbee, B. Neal, Eur. J. Cariovasc. Prev. Rehabil. 17, S3 (2010)

    Article  Google Scholar 

  3. E. Ferrannini, A. Mari, Metabolism 63, 1217 (2014)

    Article  CAS  Google Scholar 

  4. C.R. Thomas, S.L. Turner, W.H. Jefferson, C.J. Bailey, Biochem. Pharmacol. 56, 1145 (1998)

    Article  CAS  Google Scholar 

  5. S.M. Abu-El-Wafa, M.A. El-Ries, F.H. Ahmed, Inorg. Chim. Acta 136, 127 (1987)

    Article  CAS  Google Scholar 

  6. F.A. Al-Saif, M.S. Refat, J. Therm. Anal. Calorim. 111, 2079 (2013)

    Article  CAS  Google Scholar 

  7. M.S. Lennard, C. Casey, G.T. Tucker, H.F. Woods, Brit. J. Clin. Pharmaco. 6, 183 (1978)

    Article  CAS  Google Scholar 

  8. E. Uçaktürk, Anal. Methods 5, 4723 (2013)

    Article  Google Scholar 

  9. J.-Z. Song, H.-F. Chen, S.-J. Tian, Z.-P. Sun, J. Chromatogr. B 708, 277 (1998)

    Article  CAS  Google Scholar 

  10. J.M. Calatayud, P.C. Falco, M.C. Pascual, Martiy. Anal. Lett. 18, 1381 (1985)

    Article  CAS  Google Scholar 

  11. M.B. Gholivand, L. Mohammadi-Behzad, Anal. Biochem. 438, 53 (2013)

    Article  CAS  Google Scholar 

  12. S. Skrzypek, V. irčeski, W. Ciesielski, A. Sokołowski, R. Zakrzewski, J. Pharmaceut. Biomed. 45, 275 (2007)

  13. X.-J. Tian, J.-F. Song J. Pharmaceut. Biomed. 44, 1192 (2007)

  14. X.-J. Tian, J.-F. Song, X.-J. Luan, Y.-Y. Wang, Q.-Z. Shi, Anal. Bioanal. Chem. 386, 2081 (2006)

    Article  CAS  Google Scholar 

  15. N. Sattarahmady, H. Heli, F. Faramarzi, Talanta 82, 1126 (2010)

    Article  CAS  Google Scholar 

  16. E. Roy, S. Patra, R. Madhuri, P.K. Sharma, Talanta 120, 198 (2014)

    Article  CAS  Google Scholar 

  17. D. Brocks, R.Q. Gabr, R.S. Padwal, J. Pharm. Pharm. Sci. 13, 486 (2010)

    Google Scholar 

  18. M.A.S. Marques, A.D.S. Soares, O.W. Pinto, P.T.W. Barroso, D.P. Pinto, M. Ferreira-Filho, E. Werneck-Barroso, J. Chromatogr. B 852, 308 (2007)

    Article  CAS  Google Scholar 

  19. S.Y. Feng, E.P.C. Lai, E. Dabek-Zlotorzynska, S. Sadeghi, J. Chromatogr. A 1027, 155 (2004)

    Article  CAS  Google Scholar 

  20. S. Ashour, R. Kabbani, Anal. Lett. 36, 361 (2003)

    Article  CAS  Google Scholar 

  21. I.H.I. Habib, M.S. Kamel, Talanta 60, 185 (2003)

    Article  CAS  Google Scholar 

  22. S.Z. El-Khateeb, H.N. Assaad, M.G. El-Bardicy, A.S. Ahmad, Anal. Chim. Acta 208, 321 (1988)

    Article  CAS  Google Scholar 

  23. O. Vesterqvist, F. Nabbie, B. Swanson, J. Chromatogr. B 716, 299 (1998)

    Article  CAS  Google Scholar 

  24. K.H. Yuen, K.K. Peh, J. Chromatogr. B 710, 243 (1998)

    Article  CAS  Google Scholar 

  25. N.C. Van de Merbel, G. Wilkens, S. Fowles, B. Osterhuis, J.H.G. Jonkman, Chromatographia 47, 542 (1998)

    Article  Google Scholar 

  26. S. Majdi, A. Jabbari, H. Heli, H. Yadegari, A.A. Moosavi-Movahedi, S. Haghgoo, J. Solid State Electrochem. 13, 407 (2009)

    Article  CAS  Google Scholar 

  27. S. Skrzypek, V. Mirceski, W. Ciesielski, A. Sokolowski, R. Zakrzewski, J. Pharm. Biomed. Anal. 45, 275 (2007)

    Article  CAS  Google Scholar 

  28. N. Maleki, A. Safavi, F. Tajabadi, Anal. Chem. 78, 3820 (2006)

    Article  CAS  Google Scholar 

  29. A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectron. 24, 1655 (2009)

    Article  CAS  Google Scholar 

  30. A. Safavi, N. Maleki, E. Farjami, F. Aghakhani Mahyari, Anal. Chem. 81, 7538 (2009)

    Article  CAS  Google Scholar 

  31. A. Safavi, N. Maleki, E. Farjami, Electroanalysis 21, 1533 (2009)

    Article  CAS  Google Scholar 

  32. A. Safavi, S. Momeni, Electroanalysis 22, 2848 (2010)

    Article  CAS  Google Scholar 

  33. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  34. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  35. M.J. Frisch, et al, Gaussian03, Revision D.01, Gaussian, Inc, Wallingford, CT (2004)

  36. R.G. Pearson, Proc. Natl. Acad. Sci. USA 83, 8440 (1986)

    Article  CAS  Google Scholar 

  37. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  38. P.W. Ayers, R.G. Parr, R.G. Pearson, J. Chem. Phys. 124, 194107 (2006)

    Article  Google Scholar 

  39. R.G. Pearson, Inorg. Chim. Acta 240, 93 (1995)

    Article  CAS  Google Scholar 

  40. R.G. Pearson Chemical hardness: Applications from molecules to solids, VCH-Wiley, Weinheim (1997)

  41. T. Koopmans, Atoms Physica. 1, 104 (1934)

    Google Scholar 

  42. W. Yang, R.G. Parr, Proc. Natl. Acad. Sci. U.S.A. 82, 6723 (1985)

    Article  CAS  Google Scholar 

  43. S.-H. Park, Y.-J. Lee, Y.-D. Huh, Chem. Commun. 47, 11763 (2011)

    Article  CAS  Google Scholar 

  44. A.M. Awwad, B. Albiss, Adv. Mater. Lett. 6, 51–54 (2015)

    CAS  Google Scholar 

  45. P. Repi č k, S. Erhardt, G. Rena, M.J. Paterson, Biochemistry 53, 787 (2014)

  46. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO, version 3.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, S., Farrokhnia, M., Karimi, S. et al. Copper hydroxide nanostructure-modified carbon ionic liquid electrode as an efficient voltammetric sensor for detection of metformin: a theoretical and experimental study. J IRAN CHEM SOC 13, 1027–1035 (2016). https://doi.org/10.1007/s13738-016-0816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0816-z

Keywords

Navigation