Skip to main content

Advertisement

Log in

Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review

  • Review
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

Medicinal plants have been a rich source of medicines. Mucuna pruriens is extensively used in Ayurveda to treat kampavat (Parkinson’s disease in modern medicine), a disease characterized by excess of Vata. Clinical and preclinical studies have substantiated claims on its efficacy and safety in PD and there are indications that it is more effective than the levodopa in reducing dyskinesias. Several constituents of Mucuna seeds such as genistein, gallic acid, unsaturated acids, nicotine, bufotenin, harmin alkaloids, lecithin, etc. have been isolated which possess neuroprotective activity and support the antiPD activity of levodopa. The review describes various constituents of Mucuna pruriens seeds in context to therapeutic utility in treating Parkinson’s disease. Since the conventional treatment of PD using levodopa with other add-on drugs is very expensive and Mucuna pruriens seeds are easily available and economic, the use of standardized extract of Mucuna seeds may drastically reduce the cost of treatment and also reduce the progression of disease. The review emphasizes the importance of holistic approach of Ayurveda in using the Mucuna pruriens in treatment of PD. Further studies may provide an approach to understand the mechanisms involved in treating PD with lesser adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmed M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147

    Article  Google Scholar 

  • Ahmed M, Yousuf S, Khan MB, Hoda MN, Ahmad AS, Ansari MA, Ishrat T, Agrawal AK, Islam F (2006) Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacol Biochem Behav 83:150–160

    Article  CAS  Google Scholar 

  • Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40:211–216

    Article  PubMed  CAS  Google Scholar 

  • Azcoitia I, Moreno A, Carrero P, Palacios S, Garcia-Segura LM (2006) Neuroprotective effects of soy phytoestrogens in the rat brain. Gynecol Endocrinol 22:63–69

    Article  PubMed  CAS  Google Scholar 

  • Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358

    Article  PubMed  CAS  Google Scholar 

  • Baluchnejadmojarad T, Roghani M, Jalali MR, Bagheri NM (2009) Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytother Res 23:132–135

    Article  PubMed  CAS  Google Scholar 

  • Ban JY, Nguyen HT, Lee HJ, Cho SO, Ju HS, Kim JY, Bae K, Song KS, Seong YH (2008) Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25−35)-induced toxicity in cultured rat cortical neurons. Biol Pharm Bull 31:149–153

    Article  PubMed  CAS  Google Scholar 

  • Barbeau A (1980) Lecithin in Parkinson’s disease. J Neural Transm Suppl 16:187–193

    PubMed  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Kumar A, Ghosal S (1995) Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 9:110–113

    Article  CAS  Google Scholar 

  • Borah A, Kochupurackal P, Mohanakumar P (2007) Long-term l-dopa treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell Mol Neurobiol 27:985–996

    Article  PubMed  CAS  Google Scholar 

  • Bordia T, Campos C, Huang L, Quik M (2008) Continuous and intermittent nicotine treatment reduces L-3, 4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J Pharmacol Exp Ther 327:239–247

    Article  PubMed  CAS  Google Scholar 

  • Bordia T, Campos C, McIntosh JM, Quik M (2010) Nicotinic receptor-mediated reduction in L-DOPA induced dyskinesias may occur via desensitization. J Pharmacol Exp Ther 333:929–938

    Article  PubMed  CAS  Google Scholar 

  • Bousquet M, Saint-Pierre M, Julien C, Salem N, Cicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 22:1213–1225

    Article  PubMed  CAS  Google Scholar 

  • Bressani R (2002) Factors influencing nutritive value in food grain legumes: Mucuna compared to other grain legumes. In: Food and feed from Mucuna: current uses and the way forward, workshop, CIDICCO, CIEPCA and World Hunger Research Center, Tegucigalpa, Honduras, 164–188

  • Campbell EL, Chebib M, Johnston GAR (2004) The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochem Pharmacol 68:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Cenci MA (2007) Dopamine dysregulation of movement control in LDOPA-induced dyskinesia. Trends Neurosci 30:236–243

    Article  PubMed  CAS  Google Scholar 

  • Charlton C (1997) Depletion of nigrostriatal and forebrain tyrosine hydroxylase by S-adenosyl methionine: a model that may explain the occurrence of depression in Parkinson’s disease. Life Sci 61:495–502

    Article  PubMed  CAS  Google Scholar 

  • Charlton C, Crowell B (1992) Parkinson’s disease-like effects of S-adenosyl-L-methionine: effects of l-dopa. Pharmacol Biochem Behav 43:423–431

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ, Zhuang X (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28:425–433

    Article  PubMed  CAS  Google Scholar 

  • Damodaran M, Ramaswamy R (1937) Isolation of L-dopa from the seeds of Mucuna pruriens. Biochem J 31:2149–2151

    PubMed  CAS  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    Article  PubMed  Google Scholar 

  • Dhanasekaran M, Tharakan B, Manyam BV (2008) Antiparkinson drug–Mucuna pruriens shows antioxidant and metal chelating activity. Phytother Res 22:6–11

    Article  PubMed  CAS  Google Scholar 

  • Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1998) In-vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70:2492–2499

    Article  PubMed  CAS  Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York, pp 170–173

    Book  Google Scholar 

  • Dunne EL, Moss SJ, Smart TG (1998) Inhibition of GABAA receptor function by tyrosine kinase inhibitors and their inactive analogues. Mol Cell Neurosci 12:300–310

    Article  PubMed  CAS  Google Scholar 

  • Foley P, Riederer P (2000) Influence of neurotoxins and oxidative stress on the onset and progression of Parkinson’s disease. J Neurol 247:82–94

    Article  Google Scholar 

  • Frost D, Meechoovet B, Wang T, Gately S, Giorgetti M, Shcherbakova I, Dunckley T (2011) β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites. PLoS One 6:e19264

    Article  PubMed  CAS  Google Scholar 

  • Fuller TA, Russchen FT, Price JL (1987) Sources of presumptive glutamatergic/aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol 258(3):I7–I338

    Article  Google Scholar 

  • Glennon RA, Dukat M, Grella B (2000) Binding of β-carbolines and relating agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepines receptors. Drug Alcohol Depend 60:121–132

    Article  PubMed  CAS  Google Scholar 

  • Gockler N, Jofre G, Papadopoulos C, Soppa U, Tejedor FJ (2009) Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation. FEBS J 276:6324–6337

    Article  PubMed  CAS  Google Scholar 

  • Godkar PB, Gordon RK, Ravindran A, Doctor BP (2004) Celastrus paniculatus seed water soluble extracts protect against glutamate toxicity in neuronal cultures from rat forebrain. J Ethnopharmacol 93:213–219

    Article  PubMed  Google Scholar 

  • Graf E, Eaton JW (1990) Antioxidant activity of phytic acid. Free Radic Biol Med 8:61–69

    Article  PubMed  CAS  Google Scholar 

  • Grella B, Dukat M, Young R, Teitler M, Davis KH, Gauthier CB, Glennon RA (1998) Investigation of hallucinogenic and related β-carbolines. Drug Alcohol Depend 50:99–107

    Article  PubMed  CAS  Google Scholar 

  • Growdon JH, Melamed E, Logue M (1982) Effects of oral L-tyrosine administration on CSF tyrosine and homovanillic acid levels in patients with Parkinson’s disease. Life Sci 30:827–832

    Article  PubMed  CAS  Google Scholar 

  • Hall S, Rulledge JH, Schallert T (1992) MRI brain iron and 6-hydroxydopamine experimental Parkinson’s disease. J Neurol Sci 113:198–208

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  • Hauser RA, Lyons KE, McClain T (2009) Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease. Mov Disord 24:979–983

    Article  PubMed  Google Scholar 

  • He Y, Thong PSP, Lee T, Leong SK, Shi CY, Wong PTH, Yuan SY, Watt F (1996) Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res 735:149–153

    Article  PubMed  CAS  Google Scholar 

  • Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: β-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 326:378–386

    Article  PubMed  CAS  Google Scholar 

  • Hinz M (2009) Depression. In: Kohlstadt I (ed) Food and nutrients in disease management. CRC Press, Baton Rouge, pp 465–481

    Google Scholar 

  • Hinz M, Stein A, Uncini T (2011) Amino acid management of Parkinson’s disease: a case study. Int J Gen Med 4:165–174

    Article  PubMed  CAS  Google Scholar 

  • Horning MS, Blakemore LJ, Trombley PQ (2000) Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res 852:56–61

    Article  PubMed  CAS  Google Scholar 

  • Houghton PJ, Howes MJ (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignal 14:6–22

    Article  CAS  Google Scholar 

  • Huang RQ, Fang MJ, Dillon GH (1999) The tyrosine kinase inhibitor genistein directly inhibits GABAA receptors. Mol Brain Res 67:177–183

    Article  PubMed  CAS  Google Scholar 

  • Huang LZ, Campos C, Ly J, Carroll FI, Quik M (2011) Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology 60:861–868

    Article  PubMed  CAS  Google Scholar 

  • Husbands SM, Glennon RA, Gorgerat S, Gough R, Tyacke R, Nutt DJ, Lewis JW, Hudson AL (2001) β-carboline binding to imidazole receptors. Drug Alcohol Depend 64:203–208

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Paulus W, Grundke-Iqbal I (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 2:327–340

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13:S24–S34

    Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–S170

    Article  PubMed  CAS  Google Scholar 

  • Johnson S (2001) The multifaceted and widespread pathology of magnesium deficiency. Med Hypotheses 56:163–170

    Article  PubMed  CAS  Google Scholar 

  • Kala BK, Mohan VR (2010) Chemical composition and nutritional evaluation of lesser known pulses of the genus, Mucuna. Adv Biores 1:105–116

    Google Scholar 

  • Kalidass C, Mohan VR (2011) Nutritional and antinutritional composition of itching bean (Mucuna pruriens (L.) DC var. pruriens): an underutilized tribal pulse in Western Ghats. Tamil Nadu Trop Subtrop Agroecosyst 14:279–293

    Google Scholar 

  • Kari AJ, Conn PJ, Niswender CM (2009) Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 8:475–491

    Article  Google Scholar 

  • Karobath M, Diaz J, Huttunen M (1971) The effect of l-dopa on the concentrations of tryptophan, tyrosine, and serotonin in the rat brain. Eur J Pharmacol 14:393–396

    Article  PubMed  CAS  Google Scholar 

  • Kasture S, Pontis S, Pinna A, Schintu N, Spina L, Longoni R, Simola N, Ballero M, Morelli M (2009a) Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens extract in rodent model of Parkinson’s disease. Neurotox Res 15:111–122

    Article  PubMed  Google Scholar 

  • Kasture VS, Katti SA, Mahajan D, Wagh R, Mohan M, Kasture SB (2009b) Antioxidant and antiparkinson activity of gallic acid derivatives. Pharmacol Online 1:385–395

    Google Scholar 

  • Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmerman L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurosurg Psychiatry 75:1672–1677

    Article  CAS  Google Scholar 

  • Kidd PM (1997) Glutathione: systemic protectant against oxidative and free radical damage. Altern Med Rev 2:155–176

    Google Scholar 

  • Kidd PM (1999) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 5:502–545

    Google Scholar 

  • Kim H, Sablin SO, Ramsay RR (1997) Inhibition of monoamine oxidase A by β-carboline derivates. Arch Biochem Biophys 337:137–142

    Article  PubMed  CAS  Google Scholar 

  • Kirtikar KR, Basu BD (1985) Indian medicinal plants. Mahendrapal Singh; Dehradun. India

  • Ko KM, Godin DV (1990) Ferric ion-induced lipid peroxidation in erythrocyte membranes: effects of phytic acid and butylated hydroxytoluene. Mol Cell Biochem 95:125–131

    PubMed  CAS  Google Scholar 

  • Kooncumchoo P, Sharma S, Porter J, Govitrapong P, Ebadi M (2006) Coenzyme Q10 provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J Mol Neurosci 28:125–141

    Article  PubMed  CAS  Google Scholar 

  • Kovacsova M, Barta A, Parohova J, Vrankova S, Pechanova O (2010) Neuroprotective mechanisms of natural polyphenolic compounds. Act Nerv Super Rediviva 52:181–186

    Google Scholar 

  • Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Han ES, Jang YY, Han JH, Ha HW, Kim DE (2000) Protective effect of harmalol and harmaline on MPTP neurotoxicity in the mouse and dopamine-induced damage of brain mitochondria and PC12 cell. J Neurochem 75:521–531

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Park HJ, Cho SY, Jung HJ, Cho SM, Cho YS, Lillehoj HS (2005) Effects of dietary phytic acid on serum and hepatic lipid levels in diabetic KK mice. Nutr Res 25:869–876

    Article  CAS  Google Scholar 

  • Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T (2010) A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord 16:458–465

    Article  PubMed  Google Scholar 

  • Lieu CA, Venkiteswaran K, Gilmour TP, Rao AN, Petticoffer AC, Gilbert EV, Deogaonkar M, Manyam BV, Subramanian T (2012) The antiparkinsonian and antidyskinetic mechanisms of Mucuna pruriens in the MPTP-treated nonhuman primate. Evid Based Complement Alternat Med 1–10

  • Liochev SI, Fridovich I (1994) The role of O2 in the production of HO: in vitro and in vivo. Free Radic Biol Med 16:29–33

    Article  PubMed  CAS  Google Scholar 

  • Liu LX, Chen W-F, Xie J-X, Wong MS (2008) Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 60:156–161

    Google Scholar 

  • Lu Z, Nie G, Belton PS, Tang H, Zhao B (2006) Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48:263–274

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Yuan L, Yu H, Ding B, Xi Y, Feng J, Xiao R (2010) Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25−35 in PC12 cells. Int J Dev Neurosci 28:289–295

    Article  PubMed  CAS  Google Scholar 

  • Mahajani SS, Doshi VJ, Parikh KM, Manyam BV (1996) Bioavailability of L-DOPA from HP-200—a formulation of seed powder of Mucuna pruriens (Bak): a pharmacokinetic and pharmacodynamic study. Phytother Res 10:254–256

    Article  CAS  Google Scholar 

  • Maher P, Davis JB (1996) The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci 16:6394–6401

    PubMed  CAS  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MBH (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Rev 48:379–387

    Article  PubMed  CAS  Google Scholar 

  • Manyam BV (1990) Paralysis agitans and levodopa in Ayurveda: ancient Indian medical treatise. Mov Disord 5:47–48

    Article  PubMed  CAS  Google Scholar 

  • Manyam BV, Dhanasekaran M, Hare TA (2004) Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother Res 9:706–712

    Article  Google Scholar 

  • Matsumoto K, Mizowaki M, Takayama H, Sakai S, Aimi N, Watanabe H (1997) Suppressive effect of mitragynine on the 5-methoxy-N,N-dimethyltryptamine-induced head-twitch response in mice. Pharmacol Biochem Behav 57:319–323

    Article  PubMed  CAS  Google Scholar 

  • Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068

    Google Scholar 

  • May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR (2003) Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J Pharmacol Exp Ther 306:301–309

    Article  PubMed  CAS  Google Scholar 

  • McKenna DJ, Towers GH (1984) Biochemistry and pharmacology of tryptamines and beta-carbolines. A minireview. J Psychoactive Drugs 16:347–358

    Article  PubMed  CAS  Google Scholar 

  • Mehta JC, Majumdar DN (1994) Indian medicinal plants V–Mucuna pruriens bark (Papilionaceae). Indian J Pharmacol 6:92–94

    Google Scholar 

  • Miyamoto S, Kuwata G, Imai M, Nagao A, Terao J (2000) Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes. Lipids 35:1411–1414

    Article  PubMed  CAS  Google Scholar 

  • Moura DJ, Richter MF, Boeira JM, Henriques JAP, Saffi J (2007) Antioxidant properties of β-carboline alkaloids are related to their antimutagenic and antigenotoxic activities. Mutagenesis 22:293–302

    Article  PubMed  CAS  Google Scholar 

  • Muñoz A, Li Q, Gardoni F, Marcello E, Qin C, Carlsson T, Kirik D, Di Luca M, Björklund A, Bezard E, Carta M (2008) Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain 131:3380–3394

    Article  PubMed  Google Scholar 

  • Muñoz A, Carlsson T, Tronci E, Kirik D, Björklund A, Carta M (2009) Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp Neurol 219:298–307

    Article  PubMed  CAS  Google Scholar 

  • Nagashayana N, Sankarankutty P, Nampoothirir MR (2000) Association of L-dopa with recovery following ayurveda medication in Parkinson’s disease. J Neurol Sci 176:124–127

    Article  PubMed  CAS  Google Scholar 

  • Naidu PS, Singh A, Kulkarni SK (2003) Effect of Withania somnifera root extract on haloperidol-induced orofacial dyskinesia: possible mechanisms of action. J Med Food 6:107–114

    Article  PubMed  Google Scholar 

  • Obata T (2003) Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Brain Res 978:241–244

    Article  PubMed  CAS  Google Scholar 

  • Pathan AA, Mohan M, Kasture AS, Kasture SB (2011) Mucuna pruriens attenuates haloperidol-induced orofacial dyskinesia in rats. Nat Prod Res 25:764–771

    Article  PubMed  CAS  Google Scholar 

  • Pearce RK, Owen A, Daniel S (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104:661–677

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310

    Article  PubMed  CAS  Google Scholar 

  • Pimpinella G, Palmery M (1995) Interaction of β-carbolines with central dopaminergic transmission in mice: structure-activity relationships. Neurosci Lett 189:121–124

    Article  PubMed  CAS  Google Scholar 

  • Polanski W, Reichmann H, Gille G (2011) Stimulation, protection and regeneration of dopaminergic neurons by 9-methyl-beta-carboline: a new anti-Parkinson drug? Expert Rev Neurother 11:845–860

    Article  PubMed  CAS  Google Scholar 

  • Pytliak M, Vargová V, Mechírová V, Felšöci M (2011) Serotonin receptors–from molecular biology to clinical applications. Physiol Res 60:15–25

    PubMed  CAS  Google Scholar 

  • Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA (2009) Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol 78:677–685

    Article  PubMed  CAS  Google Scholar 

  • Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33:1823–1831

    Article  PubMed  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  • Rommelspacher H, May T, Salewski B (1994) Harman (1-methyl-beta-carboline) is a natural inhibitor of monoamine oxidase type A in rats. Eur J Pharmacol 252:51–59

    Article  PubMed  CAS  Google Scholar 

  • Ruscher K, Rzeczinski S, Thein E, Freyer D, Victorov IV, Lam TT, Dirnagl U (2007) Neuroprotective effects of the beta-carboline abecarnil studied in cultured cortical neurons and organotypic retinal cultures. Neuropharmacology 52:1488–1495

    Article  PubMed  CAS  Google Scholar 

  • Sameri MJ, Sarkaki A, Farbood Y, Mansouri SM (2011) Motor disorders and impaired electrical power of pallidal EEG improved by gallic acid in animal model of Parkinson’s disease. Pak J Biol Sci 15:1109–1116

    Google Scholar 

  • Sathiayanarayanan L, Arulmozhi S (2007) Mucuna pruriens Linn: a comprehensive review. Pharmacognsy Rev 1:157–162

    Google Scholar 

  • Schapira AHV, Mann VM, Cooper JM (1990) Anatomic and disease specificity of NADH, CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145

    Article  PubMed  CAS  Google Scholar 

  • Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR (2009) PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 29:954–963

    Article  PubMed  Google Scholar 

  • Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM (1996) Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 20:1159–1170

    Article  CAS  Google Scholar 

  • Seidl SE, Potashkin JA (2011) The promise of neuroprotective agents in Parkinson’s disease. Front Neurol 2:68–87

    Article  PubMed  CAS  Google Scholar 

  • Sekar S, Elumalai P, Seppan P (2010) Effect of Mucuna pruriens on oxidative stress mediated damage in aged rat sperm. Int J Androl 33:22–32

    Article  CAS  Google Scholar 

  • Serrano-Dueñas M, Cardozo-Pelaez F, Sánchez-Ramos JR (2001) Effects of Banisteriopsis caapi extract on Parkinson’s disease. Sci Rev Alt Med 5:129–134

    Google Scholar 

  • Shanish AA, Roy PD, Vadivelan R, Jaysankar K, Vikram M, Nandini S, Sundeep M, Elango K, Suresh B (2010) Amelioration of CNS toxicities of L-dopa in experimental models of Parkinson’s disease by concurrent treatment with Tinospora cordifolia hygeia. J Drug Med 2:28–37

    Google Scholar 

  • Shen H-W, Jiang X-L, Winter JC, Yu A-M (2010) Psychedelic 5-methoxy-N, N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab 11:659–666

    Article  PubMed  CAS  Google Scholar 

  • Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    Article  PubMed  Google Scholar 

  • Smith RL, Canton H, Barrett RJ, Sanders-Bush E (1998) Agonist properties of N, N-dimethyltryptamine at serotonin 5–HT2A and 5–HT2C receptors. Pharmacol Biochem Behav 61:323–330

    Article  PubMed  CAS  Google Scholar 

  • Song JX, Sze SC, Ng TB, Lee CK, Leung GP, Shaw PC, Tong Y, Zhang YB (2012) Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? J Ethnopharmacol 139:698–711

    Article  PubMed  CAS  Google Scholar 

  • Squires EP, Hills CE, Rogers GJ, Garland P, Farley SR, Morgan NG (2004) The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilization in pancreatic β-cells. Eur J Pharmacol 501:31–39

    Article  PubMed  CAS  Google Scholar 

  • Sridhar KR, Bhat R (2007) Agrobotanical, nutritional and bioactive potential of unconventional legume–Mucuna. Livest Res Rural Dev 19:126–130

    Google Scholar 

  • Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP lesioned hemiparkinsonian african green monkey: evidence from proton microprobe element microanalysis. J Neurochem 62:134–146

    Article  PubMed  CAS  Google Scholar 

  • Tricklebank MD, Forler C, Middlemiss DN, Fozard JR (1985) Subtypes of the 5-HT receptor mediating the behavioural responses to 5-methoxy-N, N-dimethyltryptamine in the rat. Eur J Pharmacol 117:15–24

    Article  PubMed  CAS  Google Scholar 

  • Tse SYH, Mak IT, Dickens BF (1991) Antioxidative properties of harmane and β-carboline alkaloids. Biochem Pharmacol 42:459–464

    Article  PubMed  CAS  Google Scholar 

  • Uitti RJ, Rajput AH, Rozdilsky B (1989) Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 16:310–314

    PubMed  CAS  Google Scholar 

  • Ulrich-Merzenich G, Panek D, Zeitler H, Wagner H, Vetter H (2009) New perspectives for synergy research with the “omic”-technologies. Phytomedicine 16:495–508

    Article  PubMed  CAS  Google Scholar 

  • Ulrich-Merzenich G, Panek D, Zeitler H, Vetter H, Wagner H (2010) Drug development from natural products: exploring synergistic effects. Indian J Exp Biol 48:208–211

    PubMed  CAS  Google Scholar 

  • Umezawa H, Tobe H, Shibamoto N, Nakamura F, Nakamura K, Matsuzaki M, Takeuchi T (1975) Isolation of isoflavones inhibiting DOPA decarboxylase from fungi and streptomyces. J Antibiot 28:947–952

    Article  PubMed  CAS  Google Scholar 

  • Vaidya AB, Rajgopalan TS, Mankodi NA (1978) Treatment of Parkinsons disease with the cowhage plant–Mucuna pruriens (Bak). Neurol India 36:171–176

    Google Scholar 

  • Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-J, Li G-M, Tang W-L, Yin M (2006) Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharmacol Sin 27:145–150

    Article  PubMed  CAS  Google Scholar 

  • Williams BB, Li D, Wegrzynowicz M, Vadodaria BK, Anderson JG, Kwakye GF, Aschner M, Erikson KM, Bowman AB (2010) Disease-toxicant screen reveals a neuroprotective interaction between Huntington’s disease and manganese exposure. J Neurochem 112:227–237

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Kanthasamy AG, Reddy MB (2011) Phytic acid protects against 6-hydroxydopamine-induced dopaminergic neuron apoptosis in normal and iron excess conditions in a cell culture model. Park Dis 2011:1–6

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nagatsu T (1983) Effects of tyrosine administration on serum biopterin in normal controls and patients with Parkinson’s disease. Science 219:75–77

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Ben-Schachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 126:47–54

    Article  CAS  Google Scholar 

  • Yritia M, Riba J, Ortuño J, Ramirez A, Castillo A, Alfaro Y, de la Torre R, Barbanoj MJ (2002) Determination of N,N-dimethyltryptamine and beta-carboline alkaloids in human plasma following oral administration of Ayahuasca. J Chromatogr B Anal Technol Biomed Life Sci 779:271–281

    Article  CAS  Google Scholar 

  • Zeevalk G, Manzino L, Sonsalla PK, Bernard LP (2007) Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson’s disease. Exp Neurol 203:512–520

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother 62:236–249

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Chen Q, Zhao B (2004) Genistein ameliorates β-amyloid peptide (25–35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 36:180–188

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kasture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasture, S., Mohan, M. & Kasture, V. Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review. Orient Pharm Exp Med 13, 165–174 (2013). https://doi.org/10.1007/s13596-013-0126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-013-0126-2

Keywords

Navigation