Annals of Forest Science

, 74:31

Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales

  • Winfried Schröder
  • Stefan Nickel
  • Simon Schönrock
  • Roman Schmalfuß
  • Werner Wosniok
  • Michaela Meyer
  • Harry Harmens
  • Marina V. Frontasyeva
  • Renate Alber
  • Julia Aleksiayenak
  • Lambe Barandovski
  • Oleg Blum
  • Alejo Carballeira
  • Maria Dam
  • Helena Danielsson
  • Ludwig De Temmermann
  • Anatoly M. Dunaev
  • Barbara Godzik
  • Katrin Hoydal
  • Zvonka Jeran
  • Gunilla Pihl Karlsson
  • Pranvera Lazo
  • Sebastien Leblond
  • Jussi Lindroos
  • Siiri Liiv
  • Sigurður H. Magnússon
  • Blanka Mankovska
  • Encarnación Núñez-Olivera
  • Juha Piispanen
  • Jarmo Poikolainen
  • Ion V. Popescu
  • Flora Qarri
  • Jesus Miguel Santamaria
  • Mitja Skudnik
  • Zdravko Špirić
  • Trajce Stafilov
  • Eiliv Steinnes
  • Claudia Stihi
  • Ivan Suchara
  • Lotti Thöni
  • Hilde Thelle Uggerud
  • Harald G. Zechmeister
Original Paper

DOI: 10.1007/s13595-017-0621-6

Cite this article as:
Schröder, W., Nickel, S., Schönrock, S. et al. Annals of Forest Science (2017) 74: 31. doi:10.1007/s13595-017-0621-6

Abstract

Key message

Moss surveys provide spatially dense data on environmental concentrations of heavy metals and nitrogen which, together with other biomonitoring and modelling data, can be used for indicating deposition to terrestrial ecosystems and related effects across time and areas of different spatial extension.

Context

For enhancing the spatial resolution of measuring and mapping atmospheric deposition by technical devices and by modelling, moss is used complementarily as bio-monitor.

Aims

This paper investigated whether nitrogen and heavy metal concentrations derived by biomonitoring of atmospheric deposition are statistically meaningful in terms of compliance with minimum sample size across several spatial levels (objective 1), whether this is also true in terms of geostatistical criteria such as spatial auto-correlation and, by this, estimated values for unsampled locations (objective 2) and whether moss indicates atmospheric deposition in a similar way as modelled deposition, tree foliage and natural surface soil at the European and country level, and whether they indicate site-specific variance due to canopy drip (objective 3).

Methods

Data from modelling and biomonitoring atmospheric deposition were statistically analysed by means of minimum sample size calculation, by geostatistics as well as by bivariate correlation analyses and by multivariate correlation analyses using the Classification and Regression Tree approach and the Random Forests method.

Results

It was found that the compliance of measurements with the minimum sample size varies by spatial scale and element measured. For unsampled locations, estimation could be derived. Statistically significant correlations between concentrations of heavy metals and nitrogen in moss and modelled atmospheric deposition, and concentrations in leaves, needles and soil were found. Significant influence of canopy drip on nitrogen concentration in moss was proven.

Conclusion

Moss surveys should complement modelled atmospheric deposition data as well as other biomonitoring approaches and offer a great potential for various terrestrial monitoring programmes dealing with exposure and effects.

Keywords

Bioaccumulation Biomonitoring EMEP Environmental specimen bank ICP Forests Level II LOTOS-EUROS 

Supplementary material

13595_2017_621_MOESM1_ESM.docx (30 kb)
Table S1(DOCX 29 kb)
13595_2017_621_MOESM2_ESM.docx (30 kb)
Table S2(DOCX 30 kb)
13595_2017_621_MOESM3_ESM.docx (326 kb)
Figure S1(DOCX 326 kb)
13595_2017_621_MOESM4_ESM.docx (220 kb)
Figure S2(DOCX 220 kb)
13595_2017_621_MOESM5_ESM.docx (217 kb)
Figure S3(DOCX 217 kb)
13595_2017_621_MOESM6_ESM.docx (228 kb)
Figure S4(DOCX 227 kb)
13595_2017_621_MOESM7_ESM.docx (210 kb)
Figure S5(DOCX 209 kb)
13595_2017_621_MOESM8_ESM.docx (226 kb)
Figure S6(DOCX 226 kb)
13595_2017_621_MOESM9_ESM.docx (228 kb)
Figure S7(DOCX 228 kb)
13595_2017_621_MOESM10_ESM.docx (168 kb)
Figure S8(DOCX 168 kb)
13595_2017_621_MOESM11_ESM.docx (193 kb)
Figure S9(DOCX 192 kb)
13595_2017_621_MOESM12_ESM.docx (219 kb)
Figure S10(DOCX 219 kb)
13595_2017_621_MOESM13_ESM.docx (218 kb)
Figure S11(DOCX 217 kb)
13595_2017_621_MOESM14_ESM.docx (40 kb)
Figure S12(DOCX 39 kb)
13595_2017_621_MOESM15_ESM.docx (42 kb)
Figure S13(DOCX 42 kb)
13595_2017_621_MOESM16_ESM.docx (43 kb)
Figure S14(DOCX 42 kb)
13595_2017_621_MOESM17_ESM.docx (42 kb)
Figure S15(DOCX 41 kb)

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  • Winfried Schröder
    • 1
  • Stefan Nickel
    • 1
  • Simon Schönrock
    • 1
  • Roman Schmalfuß
    • 1
  • Werner Wosniok
    • 2
  • Michaela Meyer
    • 1
  • Harry Harmens
    • 3
  • Marina V. Frontasyeva
    • 4
  • Renate Alber
    • 5
  • Julia Aleksiayenak
    • 6
  • Lambe Barandovski
    • 7
  • Oleg Blum
    • 8
  • Alejo Carballeira
    • 9
  • Maria Dam
    • 10
  • Helena Danielsson
    • 11
  • Ludwig De Temmermann
    • 12
  • Anatoly M. Dunaev
    • 13
  • Barbara Godzik
    • 14
  • Katrin Hoydal
    • 10
  • Zvonka Jeran
    • 15
  • Gunilla Pihl Karlsson
    • 11
  • Pranvera Lazo
    • 16
  • Sebastien Leblond
    • 17
  • Jussi Lindroos
    • 18
  • Siiri Liiv
    • 19
  • Sigurður H. Magnússon
    • 20
  • Blanka Mankovska
    • 21
  • Encarnación Núñez-Olivera
    • 22
  • Juha Piispanen
    • 23
  • Jarmo Poikolainen
    • 23
  • Ion V. Popescu
    • 24
  • Flora Qarri
    • 25
  • Jesus Miguel Santamaria
    • 26
  • Mitja Skudnik
    • 27
  • Zdravko Špirić
    • 28
  • Trajce Stafilov
    • 7
  • Eiliv Steinnes
    • 29
  • Claudia Stihi
    • 24
  • Ivan Suchara
    • 30
  • Lotti Thöni
    • 31
  • Hilde Thelle Uggerud
    • 32
  • Harald G. Zechmeister
    • 33
  1. 1.Chair of Landscape EcologyUniversity of VechtaVechtaGermany
  2. 2.Institute for StatisticsUniversity of BremenBremenGermany
  3. 3.ICP Vegetation Programme Coordination Centre, Centre for Ecology & Hydrology, Environment Centre WalesBangorUK
  4. 4.Moss Survey Coordination Centre, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear ResearchMoscowRussia
  5. 5.Environmental Agency of BolzanoLaivesItaly
  6. 6.International Sakharov Environmental UniversityMinskBelarus
  7. 7.Ss. Cyril and Methodius UniversitySkopjeMacedonia
  8. 8.National Botanical GardenAcademy of Science of UkraineKievUkraine
  9. 9.Ecologia Facultad De BiologiaUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  10. 10.Environment AgencyArgirFaroe Islands
  11. 11.IVL Swedish Environmental Research InstituteGöteborgSweden
  12. 12.Veterinary and Agrochemical Research Centre CODA-CERVATervurenBelgium
  13. 13.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  14. 14.W. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
  15. 15.Jožef Stefan InstituteLjubljanaSlovenia
  16. 16.University of TiranaTiranaAlbania
  17. 17.National Museum of Natural HistoryParisFrance
  18. 18.Natural Resources InstituteHelsinkiFinland
  19. 19.Tallinn Botanic GardenTallinnEstonia
  20. 20.Icelandic Institute of Natural HistoryGarðabærIceland
  21. 21.Institute of Landscape EcologySlovak Academy of SciencesBratislavaSlovakia
  22. 22.Universidad de La RiojaLogroñoSpain
  23. 23.Natural Resources Institute Finland (Luke)OulouFinland
  24. 24.Valahia University of TargovisteTargovisteRomania
  25. 25.University of VloraVlorëAlbania
  26. 26.University of NavarraNavarraSpain
  27. 27.Slovenian Forestry InstituteLjubljanaSlovenia
  28. 28.Green Infrastructure LtdZagrebCroatia
  29. 29.Norwegian University of Science and TechnologyTrondheimNorway
  30. 30.Silva Tarouca Research Institute for Landscape and Ornamental GardeningPrůhoniceCzech Republic
  31. 31.FUB-Research Group for Environmental MonitoringRapperswilSwitzerland
  32. 32.Norwegian Institute for Air ResearchKjellerNorway
  33. 33.University of ViennaWienAustria

Personalised recommendations