Skip to main content

Advertisement

Log in

Advanced methods of plant disease detection. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Plant diseases are responsible for major economic losses in the agricultural industry worldwide. Monitoring plant health and detecting pathogen early are essential to reduce disease spread and facilitate effective management practices. DNA-based and serological methods now provide essential tools for accurate plant disease diagnosis, in addition to the traditional visual scouting for symptoms. Although DNA-based and serological methods have revolutionized plant disease detection, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic diffusion. They need at least 1–2 days for sample harvest, processing, and analysis. Here, we describe modern methods based on nucleic acid and protein analysis. Then, we review innovative approaches currently under development. Our main findings are the following: (1) novel sensors based on the analysis of host responses, e.g., differential mobility spectrometer and lateral flow devices, deliver instantaneous results and can effectively detect early infections directly in the field; (2) biosensors based on phage display and biophotonics can also detect instantaneously infections although they can be integrated with other systems; and (3) remote sensing techniques coupled with spectroscopy-based methods allow high spatialization of results, these techniques may be very useful as a rapid preliminary identification of primary infections. We explain how these tools will help plant disease management and complement serological and DNA-based methods. While serological and PCR-based methods are the most available and effective to confirm disease diagnosis, volatile and biophotonic sensors provide instantaneous results and may be used to identify infections at asymptomatic stages. Remote sensing technologies will be extremely helpful to greatly spatialize diagnostic results. These innovative techniques represent unprecedented tools to render agriculture more sustainable and safe, avoiding expensive use of pesticides in crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural networks

APAR:

Absorbed photosynthetic active radiation

ARDRA:

Amplified 16S ribosomal DNA restriction analysis

AVIRIS:

Airborne visible/infrared imaging spectrometer

BAW:

Beet armyworms

BLAST:

Basic local alignment search tool

CDR:

Complementary determining regions

CMV:

Cucumber mosaic virus

Co-PCR:

Cooperative PCR

DMNT:

Dimethylonatriene

DMS:

Differential mobility spectrometry

dNTP:

Nucleoside triphosphates containing deoxyribose

dsDNA:

Double-stranded DNA

ELISA:

Enzyme-linked immunosorbent assay

EnMAP:

Environmental mapping and analysis program

EO:

Earth observation

EPPO:

European and Mediterranean Plant Protection Organization

FAIMS:

High field asymmetric waveform ion mobility spectrometry

FAO:

Food and Agriculture Organization

FISH:

Fluorescence in situ hybridization

GC-MS:

Gas chromatography mass spectrometry

ICA-PCA:

Independent-principal components analysis

LAMP:

Loop-mediated isothermal amplification

LAI:

Leaf Area Index

Landsat TM:

Earth Resources Technology Satellite Thematic Mapper

LFM:

Lateral flow microarrays

M-PCR:

Multiplex PCR

MVA:

Multivariate data analysis

NASBA:

Nucleic acid sequence-based amplification

NIR:

Near-infrared wavelength

NMR:

Nuclear magnetic resonance

nPCR:

Nested PCR

PCA:

Principal component analysis

PFGE:

Pulsed-field gel electrophoresis

PCR:

Polymerase chain reaction

PDD:

Plant disease detection

PLRV:

Potato leafroll virus

PPV:

Plum pox potyvirus

PRISMA:

PRecursore IperSpettrale della Missione Applicativa

PTR-MS:

Proton-transfer-reaction mass spectrometry

RAPD:

Random amplified polymorphic DNA

rep-PCR:

Repetitive-sequence PCR

RFLP:

Restriction fragment length polymorphism

RS:

Remote sensing

RTM:

Radiative transfer modeling

RT-PCR:

Real-time PCR

SAIL:

Scattering by arbitrarily inclined leaves

SAM:

Spectral angle mapper classification

SBSE:

Stir bar sorptive extraction

scFv:

Single-chain variable fragment

SELEX:

Systematic evolution of ligands by exponential enrichment

SIFT-MS:

Selected ion flow tube mass spectrometry

SMA:

Spectral mixture analysis

SPME:

Solid-phase microextraction

ssDNA:

Single-stranded DNA

SNP:

Single nucleotide polymophisms

SSEM:

Serologically specific electron microscopy

ssRNA:

Single-stranded RNA

STR:

Short tandem repeats

SVIs:

Spectral vegetation indices

SVM:

Support vector machine

SWIR:

Shortwave infrared wavelength

TIR:

Thermal infrared wavelength

TMTT:

trimethyltridecatetraene

TYLCD:

Tomato yellow leaf curl disease

UAV:

Unmanned aerial vehicle

VI:

Vegetation indices

VIS:

Visible wavelength

VOC:

Volatile organic compounds

References

  • Agati G, Foschi L, Grossi N, Guglielminetti L, Cerovic ZG, Volterrani M (2013) Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. Eur J Agron 45:39–51. doi:10.1016/j.eja.2012.10.011

    CAS  Google Scholar 

  • Ahmed MU, Hossain MM, Tamiyaa E (2008) Electrochemical biosensors for medical and food applications. Electroanalysis 20:616–626. doi:10.1002/elan.200704121

    CAS  Google Scholar 

  • Aksenov A, WHK C, Zhao W, Bardaweel H, Martinelli F, Fiehn O, Dandekar AM, Davis CE (2012) Reagentless detection of citrus pathogens using differential mobility spectrometry. Citrograph 3:54–56

    Google Scholar 

  • Aksenov AA, Pasamontes A, Peirano DJ, Zhao W, Dandekar AM, Fiehn O, Eshani R, Davis CE (2014) Detection of Huanglongbing disease using differential mobility spectrometry. Anal Chem 86:2481–2488. doi:10.1021/ac403469y

    CAS  PubMed  Google Scholar 

  • Alarcon B, López MM, Cambra M, Gorris MT, Guerri J (1990) Differentiation of Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. atroseptica isolated from potato by Western blot and subsequent indirect ELISA. J Appl Biol 69:17–24. doi:10.1111/j.1365-2672.1990.tb02906.x

    Google Scholar 

  • Anderson MC, Neale CMU, Li F, Norman JM, Kustas WP, Jayanthi H, Chavez J (2004) Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sens Envir 92:447–464. doi:10.1016/j.rse.2004.03.019

    Google Scholar 

  • Andris-Widhopf J, Rader C, Steinberger P, Fuller R, Barbas CF III (2000) Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Method 242:159–181. doi:10.1016/S0022-1759(00)00221-0

    CAS  Google Scholar 

  • Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. doi:10.1021/ac00218a019

    CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: ‘talking trees’ in the genomics era. Science 311:812–814. doi:10.1126/science.1118446

    CAS  PubMed  Google Scholar 

  • Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747. doi:10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4

    CAS  Google Scholar 

  • Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation—a review. Anal Bioanal Chem 373:3–22. doi:10.1007/s00216-002-1266-2

    CAS  PubMed  Google Scholar 

  • Barbas CF III, Burton DR, Scott JK, Silverman GJ (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Baret F, Houlès V, Guèrif M (2007) Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. J Exp Bot 58:869–880. doi:10.1093/jxb/erl231

    CAS  PubMed  Google Scholar 

  • Bates SR, Baldwin DA, Channing A, Gifford LK, Hsu A, Lu P (2005) Cooperativity of paired oligonucleotide probes for microarray hybridization assays. Anal Biochem 342:59–68. doi:10.1016/j.ab.2005.03.030

    CAS  PubMed  Google Scholar 

  • Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich WB (2011) Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric 75:304–312. doi:10.1016/j.compag.2010.12.006

    Google Scholar 

  • Berdugo CA, Zito R, Paulus S, Mahlein AK (2014) Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol doi:10.1111/ppa.12219

    Google Scholar 

  • Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109:861–896. doi:10.1021/cr800364q

    CAS  PubMed  Google Scholar 

  • Blasco J, Aleixos N, Gómez J, Moltó E (2007) Citrus sorting by identification of the most common defects using multispectral computer vision. J Food Engin 83:384–393. doi:10.1016/j.jfoodeng.2007.03.027

    Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Ann Rev Cell Develop Biol 16:1–18. doi:10.1146/annurev.cellbio.16.1.1

    CAS  Google Scholar 

  • Bock CH, Parker PE, Cook AZ, Gottwald TR (2008) Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Dis 92:530–541. doi:10.1094/PDIS-92-4-0530

    Google Scholar 

  • Bock CH, Poole GH, Parker PE, Gottwald TR (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29:59–107. doi:10.1080/07352681003617285

    Google Scholar 

  • Bravo C, Moshou D, West J, McCartney A, Ramon H (2003) Early disease detection in wheat fields using spectral reflectance. Biosys Eng 84:137–145. doi:10.1016/S1537-5110(02)00269-6

    Google Scholar 

  • Calderón R, Navas-Cortés JA, Lucena C, Zarco-Tejada PJ (2013) High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens Environ 139:231–245. doi:10.1016/j.rse.2013.07.031

    Google Scholar 

  • Camargo A, Smith JS (2009) Image pattern classification for the identification of disease causing agents in plants. Comput Electron Agric 66:121–125. doi:10.1016/j.compag.2009.01.003

    Google Scholar 

  • Cardoza YJ, Alborn HT, Tumlinson JH (2002) In vivo volatile emissions from peanuts plants induced by simultaneous fungal infection and insect damage. J Chem Ecol 28:161–173. doi:10.1023/A:1013523104853

    CAS  PubMed  Google Scholar 

  • Cardoza YJ, Teal PEA, Tumlinson JH (2003) Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host-searching behavior by Cotesia marginiventris. Environ Entomol 32:970–976. doi:10.1603/0046-225X-32.5.970

    Google Scholar 

  • Carter DJ, Cary RB (2007) Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography. Nucleic Acids Res 35:e74. doi:10.1093/nar/gkm269

    PubMed Central  PubMed  Google Scholar 

  • Caruso P, Gorris MT, Cambra M, Palomo JL, Collar J, López MM (2002) Enrichment double-antibody sandwich indirect enzyme-linked immunosorbent assay that uses a specific monoclonal antibody for sensitive detection of Ralstonia solanacearum in asymptomatic potato tubers. Appl Environ Microbiol 68:3634–3638. doi:10.1128/AEM.68.7.3634-3638.2002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caruso P, Bertolini E, Cambra M, López MM (2003) A new and co-operational polymerase chain reaction (Co-PCR) for rapid detection of Ralstonia solanacearum in water. J Microbiol Method 55:257–272. doi:10.1016/S0167-7012(03)00161-1

    CAS  Google Scholar 

  • Chaerle L, Van Der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5:495–501. doi:10.1016/S1360-1385(00)01781-7

    CAS  PubMed  Google Scholar 

  • Chaerle L, Van Caeneghem W, Messens E, Lambers H, Van Montagu M, Van Der Straeten D (1999) Presymptomatic visualization of plant–virus interactions by thermography. Nat Biotechnol 17:813–816. doi:10.1038/11765

    CAS  PubMed  Google Scholar 

  • Chaerle L, Hulsen K, Hermans C, Strasser RJ, Valcke R, Höfte M, Van Der Straeten D (2003) Robotized time-lapse imaging to assess in-planta uptake of phenylurea herbicides and their microbial degradation. Physiol Plant 118:613–619. doi:10.1034/j.1399-3054.2003.00143.x

    CAS  Google Scholar 

  • Chen B, Wang K, Li S, Wang J, Bai J, Xiao C, Lai J (2008) Spectrum characteristics of cotton canopy infected with Verticillium wilt and inversion of severity level. In: Li D (ed) Computer and computing technologies in agriculture, volume II. Springer, 259:1169–1180. doi:10.1016/S1671-2927(08)60053-X

  • Cheung W, Xu Y, Thomas CLP, Goodacre R (2009) Discrimination of bacteria using pyrolysis-gas chromatography-differential mobility spectrometry (Py-GC-DMS) and chemometrics. Analyst 134:557–563. doi:10.1039/b812666f

    CAS  PubMed  Google Scholar 

  • Choi YH, Tapias EC, Kim HK, Lefeber AW, Erkelens C, Verhoeven JTJ, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410. doi:10.1104/pp. 104.041012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cirvilleri G, Scuderi G, Bonaccorsi A, Scortichini M (2007a) Occurrence of Pseudomonas syringae pv. coryli on hazelnut orchards in Sicily, Italy and characterization by fluorescent amplified fragment length polymorphism. J Phytopathol 155:397–402. doi:10.1111/j.1439-0434.2007.01249.x

    CAS  Google Scholar 

  • Cirvilleri G, Scuderi G, Catara V, Scortichini M (2007b) Typing of Pseudomonas syringae pv. pisi strains by fluorescent AFLP fingerprinting. J Plant Pathol 89:421–425. doi:10.4454/jpp.v89i3.776

    CAS  Google Scholar 

  • Clerc A, Manceau C, Nesme X (1998) Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae. Appl Environ Microbiol 64:1180–1187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92. doi:10.1038/350091a0

    CAS  PubMed  Google Scholar 

  • Costa G, Noferini M, Fiori G, Spinelli F (2007) Innovative application of non-destructive techniques for fruit quality and disease diagnosis. Acta Hortic 753:275

    Google Scholar 

  • Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant–environment interactions. J Exp Bot 64:3937–3949. doi:10.1093/jxb/ert029

    CAS  PubMed  Google Scholar 

  • Daley PF (1995) Chlorophyll fluorescence analysis and imaging in plant stress and disease. Can J Plant Pathol 17:167–173. doi:10.1080/07060669509500708

    Google Scholar 

  • Damm A, Erler A, Hillen W, Meroni M, Schaepman ME, Verhoef W, Rascher U (2011) Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens Environ 115:1882–1892. doi:10.1016/j.rse.2011.03.011

    Google Scholar 

  • Dandekar AM, Martinelli F, Davis CE, Bhushan A, Zhao W, Fiehn O, Skogerson K, Wohlgemuth G, D’Souza R, Roy S, Reagan RL, Lin D, Bruce Cary R, Pardington P, Gupta G (2010) Analysis of early host responses for asymptomatic disease detection and management of specialty crops. Crit Rev Immunol 30:277–289. doi:10.1615/CritRevImmunol.v30.i3.50

    CAS  PubMed  Google Scholar 

  • D’Asaro F, Grillone G (2012) Empirical investigation of Curve Number method parameters in the Mediterranean area. J Hydr Eng 17:1141–1152. doi:10.1061/(ASCE)HE.1943-5584.0000570

    Google Scholar 

  • Davino S, Napoli C, Davino M, Accotto GP (2006) Spread of Tomato yellow leaf curl virus: partial displacement of another geminivirus originally present. Eur J Plant Pathol 114:293–299

    Google Scholar 

  • Davino S, Miozzi L, Panno S, Rubio L, Davino M, Accotto GP (2012) Recombination profiles between Tomato yellow leaf curl virus and tomato yellow leaf curl Sardinia virus in laboratory and field condition: evolutionary and taxonomic implications. J Gen Virol 93:2712–2717. doi:10.1099/vir.0.045773-0

    CAS  PubMed  Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc Royal Soc Lond B 205:489–511. doi:10.1098/rspb.1979.0081

    CAS  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986. doi:10.1038/nature03449

    CAS  PubMed  Google Scholar 

  • de Lacy Costello BPJ, Evans P, Ewen RJ, Gunson HE, Jones PRH, Ratcliffe NM, Spencer-Phillips PTN (2001) Gas chromatography-mass spectrometry analyse of volatile compounds from potato tubers inoculated with Phytohthora infestans or Fusarium coeruleum. Plant Pathol 50:489–496. doi:10.1046/j.1365-3059.2001.00594.x

    Google Scholar 

  • De Jong S, van der Meer FD (2006) Remote sensing image analysis: including the spatial domain. Springer editions, Dordrecht

    Google Scholar 

  • Delalieux S, Van Aardt JAN, Keulemans W, Schrevens E, Coppin P (2007) Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. Eur J Agron 27:130–143. doi:10.1016/j.eja.2007.02.005

    Google Scholar 

  • Delwiche SR, Kim MS (2000) Hyperspectral imaging for detection of scab in wheat. Biol Qual Prec Agric II, Proc SPIE 4203:13–20. doi:10.1117/12.411752

    Google Scholar 

  • Doleman BJ, Severin EJ, Lewis NS (1997) Trends in odor intensity for human and electronic noses: relative roles of odorant vapor pressure vs. molecularly specific odorant binding. PNAS 95:5442–5447. doi:10.1073/pnas.95.10.5442

    Google Scholar 

  • Ellington AD, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi:10.1038/346818a0

    CAS  PubMed  Google Scholar 

  • Egerton FN (2012) History of Ecological Sciences. Part 44: Phytopathology during the 1800s. Bull Ecol Soc Am 93:303–339. doi:10.1890/0012-9623-93.4.303

    Google Scholar 

  • Fehsenfild FC, Ferguson EE, Schmeltekopf AL (1966) Thermal energy ion—neutral reaction rates. III. The measured rate constant for the reaction O+(4S)+CO2 (1Σ)→O2+(2Π)+CO (1Σ). J Chem Phys 44:3022–3024. doi:10.1063/1.1727173

    Google Scholar 

  • Fend R, Kolk A, Bessant C, Buijtels P, Klatser PR, Woodman AC (2006) Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J Clin Microb 44:2039–2045. doi:10.1128/JCM.01591-05

    Google Scholar 

  • Ferguson EE, Fehsenfeld FC, Schmeltekopf AL (1969) Flowing afterglow measurements of ion-neutral reactions. Adv At Mol Phys 5:1–56. doi:10.1016/S0065-2199(08)60154-2

    CAS  Google Scholar 

  • Franke J, Menz G (2007) Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agric 8:161–172

    Google Scholar 

  • Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuators B Chem 18:210–211. doi:10.1016/0925-4005(94)87085-3

    Google Scholar 

  • Gascoyne PRC, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4:299–309. doi:10.1039/b404130e

    CAS  PubMed  Google Scholar 

  • Grillone G, Agnese C, D’Asaro F (2012) Estimation of daily solar radiation from measured air temperature extremes in the mid-Mediterranean area. J Irr Drain Eng 138:939–947. doi:10.1061/(ASCE)IR.1943-4774.0000480

    Google Scholar 

  • Grillone G, Baiamonte G, D’Asaro F (2014) Empirical determination of the average annual runoff coefficient in the Mediterranean area. Am J Appl Sci 11:89–95. doi:10.3844/ajassp.2014.89.95

    Google Scholar 

  • Goulart LR, Vieira CU, Freschi AP, Capparelli FE, Fujimura PT, Almeida JF, Ferreira LF, Goulart IMB, Brito-Madurro AG, Madurro JM (2010) Biomarkers for serum diagnosis of infectious diseases and their potential application in novel sensor platforms. Crit Rev Immunol 30:201–222. doi:10.1615/CritRevImmunol.v30.i2.70

    CAS  PubMed  Google Scholar 

  • Gowen AA, O’Donnell C, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends Food Sci Tech 18:590–598. doi:10.1016/j.tifs.2007.06.001

    CAS  Google Scholar 

  • Graeff S, Link J, Claupein W (2006) Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Central Eur J Biol 1:275–288. doi:10.2478/s11535-006-0020-8

    Google Scholar 

  • Grisham MP, Johnson RM, Zimba PV (2010) Detecting sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. J Virol Method 167:140–145. doi:10.1016/j.jviromet.2010.03.024

    CAS  Google Scholar 

  • Grothues D, Rudolph K (1991) Macrorestriction analysis of plant pathogenic Pseudomonas species and pathovars. FEMS Microbiol 79:83–88. doi:10.1016/0378-1097(91)90532-F

    CAS  Google Scholar 

  • Hadjiloucas S, Walker GC, Bowen JW, Zafiropoulos A (2009) Propagation of errors from a null balance terahertz reflectometer to a sample’s relative water content. J Phys Sensor Appl 178:1–5. doi:10.1088/1742-6596/178/1/012012

    Google Scholar 

  • Hampton R, Ball E, De Boer S (1990) Serological methods for detection and identification of viral and bacterial plant pathogens. A laboratory manual. APS Press, St. Paul

    Google Scholar 

  • Harper K, Kerschbaumer RJ, Ziegler A, Macintosh SM, Cowan GH, Himmler G, Mayo MA, Torrance L (1997) A scFv-alkaline phosphatase fusion protein which detects potato leafroll luteovirus in plant extracts by ELISA. J Virol Method 63:237–242. doi:10.1016/S0166-0934(96)02133-7

    CAS  Google Scholar 

  • Hendriks MMWB, van Eeuwijk FA, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, Smilde AK (2011) Data-processing strategies for metabolomics studies. Trends Anal Chem 30:1685–1698. doi:10.1016/j.trac.2011.04.019

    CAS  Google Scholar 

  • Hillnhütter C, Mahlein AK, Sikora RA, Oerke EC (2011) Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crop Res 122:70–77. doi:10.1016/j.fcr.2011.02.007

    Google Scholar 

  • Holzloehner P, Schliebs E, Maier N, Füner J, Micheel B, Heilmann K (2013) Production of monoclonal camelid antibodies by means of hybridoma technology. J Immunol 190:135.14

    Google Scholar 

  • Huang W, Lamb DW, Niu Z, Zhang Y, Liu L, Wang J (2007) Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agric 8:187–197. doi:10.1007/s11119-007-9038-9

    Google Scholar 

  • Huang J, Liao H, Zhu Y, Sun J, Sun Q, Liu X (2012) Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput Electron Agric 82:100–107. doi:10.1016/j.compag.2012.01.002

    Google Scholar 

  • Hufkens K, Bogaert J, Dong QH, Lu L, Huang CL, Ma MG, Che T, Li X, Veroustraete F, Ceulemans R (2008) Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland. J Arid Environ 72:1490–1505. doi:10.1016/j.jaridenv.2008.02.012

    Google Scholar 

  • Ibanez AM, Martinelli F, Uratsu SL, Vo A, Tinoco MA, Phu ML, Chen Y, Rocke DM, Dandekar AM (2014) Transcriptome and metabolome analysis of Citrus fruit to elucidate puffing disorder. Plant Sci 217:87–98. doi:10.1016/j.plantsci.2013.12.003

    PubMed  Google Scholar 

  • Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34:75–91

    Google Scholar 

  • Jacquemoud S, Ustin SL (2001) Leaf optical properties: a state of the art. In: Proc Int Symp Phys Meas Sign Rem Sens, pp 223–232

  • Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin SL (2009) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113:S56–S66. doi:10.1016/j.rse.2008.01.026

    Google Scholar 

  • Jansen RMC, Hofstee JW, Wildt J, Verstappen FWA, Bouwmeester HJ, van Henten EJ (2009) Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses. Plant Signal Behav 4:824–829. doi:10.4161/psb.4.9.9431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen RMC, Wildt J, Kappers IF, Bouwmeester HJ, Hofstee JW, van Henten EJ (2011) Detection of diseased plants by analysis of volatile organic compound emission. Ann Rev Phytopathol 49:157–174. doi:10.1146/annurev-phyto-072910-095227

    CAS  Google Scholar 

  • Johnson DA, Alldredge JR, Hamm PB, Frazier BE (2003) Aerial photography used for spatial pattern analysis of late blight infection in irrigated potato circles. Phytopathology 93:805–812. doi:10.1094/PHYTO.2003.93.7.805

    PubMed  Google Scholar 

  • Klerks MM, Leone G, Lindner JL, Schoen CD, van den Heuvel JFJM (2001) Rapid and sensitive detection of Apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons. Phytopathology 91:1085–1091. doi:10.1094/PHYTO.2001.91.11.1085

    CAS  PubMed  Google Scholar 

  • Krebs MD, Cohen SJ, Lowzo J, Kang J, Tingley RD, Davis CE (2006) Two-dimensional alignment of differential mobility spectrometer data. Sensors and Actuators B-Chemical 119:475–482

    CAS  Google Scholar 

  • Laothawornkitkul J, Moore JP, Taylor JE, Malcom G, Tim D, Hewitt CN, Paul ND (2008) Discrimination of plant volatile signatures by an electronic nose: a potential technology for plant pest and disease monitoring. Environ Sci Tech 42:8433–8439. doi:10.1021/es801738s

    CAS  Google Scholar 

  • Lichtenthaler HK, Lang M, Sowinska M, Heisel F, Miehe JA (1996) Detection of vegetation stress via a new high resolution fluorescence imaging system. J Plant Physiol 148:599–612. doi:10.1016/S0176-1617(96)80081-2

    CAS  Google Scholar 

  • Lin CH, Tsai CH, Pan CW, Fu LM (2007) Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomed Microdevice 9:43–50. doi:10.1007/s10544-006-9009-3

    Google Scholar 

  • Lins EC, Belasque J Jr, Marcassa LG (2009) Detection of Citrus canker in citrus plants using laser induced fluorescence spectroscopy. Precision Agric 10:319–330. doi:10.1007/s11119-009-9124-2

  • Little EL, Bostock RM, Kirkpatrick BC (1998) Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruit in California. Appl Environ Microbiol 64:3818–3823, aem.asm.org/content/64/10/3818. Accessed June 2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu CX, Lagae L, Borghs G (2007) Manipulation of magnetic particles on chip by magnetophoretic actuation and dielectrophoretic levitation. Appl Phys Lett 90:184109. doi:10.1063/1.2736278

    Google Scholar 

  • Lorenzen B, Jensen A (1991) Spectral properties of a barley canopy in relation to the psectral properties of single leaves and the soil. Remote Sens Environ 37:23–34. doi:10.1016/0034-4257(91)90047-A

    Google Scholar 

  • López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Mol Biol 11:13–46, swfrec.ifas.ufl.edu/hlb/database/pdf/00002423.pdf. Accessed June 2014

    Google Scholar 

  • Louws FJ, Rademaker JLW, Brujin FJ (1999) The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Ann Rev Phytopathol 37:81–125. doi:10.1146/annurev.phyto.37.1.81

    CAS  Google Scholar 

  • Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors-principles and applications to clinical chemistry. Clin Chim Acta 314:1–26. doi:10.1016/S0009-8981(01)00629-5

    CAS  PubMed  Google Scholar 

  • Lytovchenko A, Beleggia R, Schauer N, Isaacsin T, Leuendorf JE, Hellmann H, Rose JKC, Fernie A (2009) Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues. BMC Plant Meth 5:1–11. doi:10.1186/1746-4811-5-4

    Google Scholar 

  • Manceau C, Brin C (2003). Pathovars of Pseudomonas syringae are structured in genetic populations allowing the selection of specific markers for their detection in plant samples. In: Iacobellis NS et al. (eds) Pseudomonas syringae and related pathogens. Kluwer, pp. 503–512

  • Mahlein AK, Oerke EC, Steiner U, Dehne HW (2012a) Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133:197–209. doi:10.1007/s10658-011-9878-z

    CAS  Google Scholar 

  • Mahlein AK, Steiner U, Hillnhütter C, Dehne HW, Oerke EC (2012b) Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Meth 8:3. doi:10.1186/1746-4811-8-3

    Google Scholar 

  • Mahlein AK, Rumpf T, Welke P, Dehne HW, Plümer L, Steiner U, Oerke EC (2013) Development of spectral indices for detecting and identifying plant diseases. Remote Sens Environ 128:21–30. doi:10.1016/j.rse.2012.09.019

    Google Scholar 

  • Malthus TJ, Madeira AC (1993) High resolution spectroradiometry: spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sens Environ 45:107–116

    Google Scholar 

  • Marco S, Gutiérrez-Gálvez A (2012) Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sens J 12:469–479. doi:10.1109/JSEN.2012.2192920

    Google Scholar 

  • Martinelli F, Basile B, Morelli G, D’Andria R, Tonutti P (2012a) Effects of irrigation on fruit ripening behavior and metabolic changes in olive. Sci Hortic 144:201–207. doi:10.1016/j.scienta.2012.07.012

    CAS  Google Scholar 

  • Martinelli F, Uratsu SL, Albrecht U, Reagan RL, Phu ML et al. (2012b) Transcriptome profiling of citrus fruit response to Huanglongbing disease. PLoS One 7:e38039. doi:10.1371/journal.pone.0038039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U et al. (2013a) Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS One 8:e74256. doi:10.1371/journal.pone.0074256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinelli F, Remorini D, Saia S, Massai R, Tonutti P (2013b) Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci Hortic 52–58. doi:10.1016/j.scienta.2013.04.039

  • Martinelli F, Scalenghe R, Giovino A, Pasquale M, Aksenov AA, Pasamontes A, Peirano DJ, Davis CE, Dandekar AM (2014) Proposal of a Citrus translational genomic approach for early and infield detection of Flavescence dorée in Vitis. Plant Biosyst. doi:10.1080/11263504.2014.908976

    Google Scholar 

  • Mauck KE, De Moraes CM, Mescher MC (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. PNAS 23:3600–3605. doi:10.1073/pnas.0907191107

    Google Scholar 

  • Meroni M, Rossini M, Colombo R (2010) Characterization of leaf physiology using reflectance and fluorescence hyperspectral measurements. In: Maselli F, Menenti M, Brivio PA (eds) Optical observation of vegetation properties and characteristics. Research Signpost, Trivandrum, pp 165–187

    Google Scholar 

  • Mewes T, Franke J, Menz G (2011) Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precision Agric 12:795–812. doi:10.1007/s11119-011-9222-9

    Google Scholar 

  • Minsavage GV, Thompson CM, Hopkins DL, Leite RMVBC, Stall RE (1994) Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84:456–461, www.apsnet.org/publications/phytopathology/backissues/Documents/1994Articles/Phyto84n05_456.PDF. Accessed June 2014

    CAS  Google Scholar 

  • Mirik M, Michels GJ Jr, Kassymzhanova-Mirik S, Elliott NC, Catana V, Jones DB, Bowling R (2006) Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat. Comput Electron Agric 51:86–98. doi:10.1016/j.compag.2005.11.004

    Google Scholar 

  • Mirik M, Jones DC, Price JA, Workneh F, Ansley RJ, Rush CM (2011) Satellite remote sensing of wheat infected by wheat streak mosaic virus. Plant Dis 95:4–12. doi:10.1094/PDIS-04-10-0256

    Google Scholar 

  • Mirik M, Ansley RJ, Price JA, Workneh F, Rush CM (2013) Remote monitoring of wheat streak mosaic progression using sub-pixel classification of Landsat 5 TM imagery for site specific disease management in winter wheat. Adv Remote Sens 2:16–28. doi:10.3390/rs5020612

    Google Scholar 

  • Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154. doi:10.1006/bbrc.2001.5921

    CAS  PubMed  Google Scholar 

  • Morris T, Robertson B, Gallagher M (1996) Rapid reverse transcription-PCR detection of hepatitis C virus RNA in serum by using the TaqMan fluorogenic detection system. J Clin Microbiol 34:2933–2936, jcm.asm.org/content/34/12/2933. Accessed on June 2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moshou D, Bravo C, West J, Wahlen S, McCartney A, Ramon H (2004) Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput Electron Agric 44:173–188. doi:10.1016/j.compag.2004.04.003

    Google Scholar 

  • Moshou D, Bravo C, Oberti R, West J, Bodria L, McCartney A, Ramon H (2005) Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real Time Imag J 11:75–83. doi:10.1016/j.rti.2005.03.003

    Google Scholar 

  • Moshou D, Gravalos I, Bravo DKC, Oberti R, West JS, Ramon H (2012) Multisensor fusion of remote sensing data for crop disease detection. In: Thakur JK, Singh SK, Ramanathan A, Prasad MBK, Gossel W (eds) Geospatial techniques for managing environmental resources. Springer, pp 201–219

  • Mottram R, DeJager JM, Duckworth JR (1983) Evaluation of a water stress index for maize using an infra-red thermometer. Crop Prod 12:26–28

    Google Scholar 

  • Mumford R, Boonham N, Tomlinson J, Barker I (2006) Advances in molecular phytodiagnostics—new solutions for old problems. Eur J Plant Pathol 116:1–19. doi:10.1007/s10658-006-9037-0

    CAS  Google Scholar 

  • Mundt CC, Sackett KE, Wallace LRD, Cowger C, Dudley JP (2009) Long-distance dispersal and accelerating waves of disease: empirical relationships. Am Nat 173:456–466. doi:10.1086/597220

    PubMed  Google Scholar 

  • Munkacsi AB, Stoxen S, May G (2007) Domestication of maize, sorghum and sugarcane did not drive the divergence of their smut pathogens. Evolution 61:388–403. doi:10.1111/j.1558-5646.2007.00036.x

    CAS  PubMed  Google Scholar 

  • Naidu RA, Perry EM, Pierce FJ, Mekuria T (2009) The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput Electron Agric 66:38–45. doi:10.1016/j.compag.2008.11.007

    Google Scholar 

  • Natali L, Giordani T, Lercari B, Maestrini P, Cozza R, Pangaro T, Vernieri P, Martinelli F, Cavallini A (2007) Light induces expression of a dehydrin-encoding gene during seedling de-etiolation in sunflower (Helianthus annuus L.). J Plant Physiol 164:263–273. doi:10.1016/j.jplph.2006.01.015

    CAS  PubMed  Google Scholar 

  • Nilsson HE (1995) Remote sensing and image analysis in plant pathology. Ann Rev Phytopthol 33:489–527. doi:10.1146/annurev.py.33.090195.002421

    CAS  Google Scholar 

  • Nolasco G, Sequeira Z, Soares C, Mansinho A, Bailey AM, Niblett CL (2002) Asymmetric PCR ELISA: increased sensitivity and reduced costs for the detection of plant viral nucleic acids. Eur J Plant Pathol 108:293–298. doi:10.1016/j.jviromet.2008.09.030

    CAS  Google Scholar 

  • Nutter FW Jr (1989) Detection and measurement of plant disease gradients in peanut with a multispectral radiometer. Phytopathology 79:958–963, www.apsnet.org/publications/phytopathology/backissues/Documents/1989Articles/Phyto79n09_958.PDF. Accessed on April 2014

    Google Scholar 

  • Nutter FW Jr, Schultz PM (1995) Improving the accuracy and precision of disease assessments: selection of methods and use of computer-aided training programs. Can J Plant Pathol 17:174–184. doi:10.1080/07060669509500709

    Google Scholar 

  • Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132. doi:10.1093/jxb/erj170

    CAS  PubMed  Google Scholar 

  • Okamoto H, Murata T, Kataoka T, Hata SI (2007) Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biol Manage 7:31–37. doi:10.1111/j.1445-6664.2006.00234.x

    Google Scholar 

  • Olmos A, Cambra M, Dasi MA, Candresse T, Esteban O, Gorris MT, Asensio M (1997) Simultaneous detection and typing of Plum pox potyvirus (PPV) isolates by heminested-PCR and PCR-ELISA. J Virol Meth 68:127–137. doi:10.1016/S0166-0934(97)00120-1

    CAS  Google Scholar 

  • Olmos A, Bertolini E, Gil M, Cambra M (2005) Real-time assay for quantitative detection of non persistently transmitted Plum pox virus RNA targets in a single aphids. J Virol Meth 128:151–155. doi:10.1016/j.jviromet.2005.05.011

    CAS  Google Scholar 

  • Omasa K (1990) Image instrumentation methods of plant analysis. In: Liskens HF, Jackson JF (eds) Modern methods of plant analysis. Springer-Verlag, Berlin, pp 203–243

    Google Scholar 

  • Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217. doi:10.1016/0161-5890(94)90001-9

    CAS  PubMed  Google Scholar 

  • Panigada C, Rossini M, Meroni M, Cilia C, Busetto L, Amaducci S, Boschetti M, Cogliati S, Picchi V, Pinto F, Marchesi A, Colombo R (2014) Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. Int J Appl Earth Obs 30:167–178. doi:10.1016/j.jag.2014.02.002

    Google Scholar 

  • Panno S, Ferriol I, Rangel E, Olmos A, Han C-G, Martinelli F, Rubio L, Davino S (2014) Detection and identification of Fabavirus species by one-step RT-PCR and multiplex RT-PCR. J Virol Meth 197:77–82. doi:10.1016/j.jviromet.2013.12.002

    CAS  Google Scholar 

  • Panno S, Davino S, Rubio L, Rangel EA, Davino M, Garcia-Hernandez J, Olmos A (2012) Simultaneous detection of the seven main tomato-infecting RNA viruses by two multiplex reverse transcription polymerase chain reactions. J Virol Meth 186:152–156. doi:10.1016/j.jviromet.2012.08.003

    CAS  Google Scholar 

  • Pawliszyn J (1997) Solid phase microextraction—theory and practice. Wiley-VCH, Weinheim

    Google Scholar 

  • Peterson RB, Aylor DE (1995) Chlorophyll fluorescence induction in leaves of Phaseolus vulgaris infected with bean rust (Uromyces appendiculatus). Plant Physiol 108:163–171. doi:10.1104/pp. 108.1.163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinter PJ, Stanghellini ME, Reginato RJ, Idso SB, Jenkins AD, Jackson RD (1979) Remote detection of biological stresses in plants with infrared thermometry. Science 205:585–587. doi:10.1126/science.205.4406.585

    PubMed  Google Scholar 

  • Polischuk VP, Shadchina TM, Kompanetz TI, BI G, Sozinov AL (1997) Changes in reflectance spectrum characteristic of Nicotiana debneyi plant under the influence of viral infection. Arch Phytopathol Plant Prot 31:115–119

    Google Scholar 

  • Prabhakar M, Prasad YG, Thirupathi M, Sreedevi G, Dharajothi B, Venkateswarlu B (2011) Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Comput Electron Agric 79:189–198. doi:10.1016/j.compag.2011.09.012

    Google Scholar 

  • Prabhakar M, Prasad YG, Rao MN (2012) Remote sensing of biotic stress in crop plants and its applications for pest management. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, pp 517–545

  • Pradhanang PM, Elphinstone JG, Fox RTV (2000) Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol 49:414–422. doi:10.1046/j.1365-3059.2000.00481.x

    Google Scholar 

  • Purcell DE, O’Shea MG, Johnson RA, Kokot S (2009) Near-infrared spectroscopy for the prediction of disease ratings for Fiji leaf gall in sugarcane clones. Appl Spectr 63:450–457. doi:10.1366/000370209787944370

    CAS  Google Scholar 

  • Rader C, Barbas CF III (1997) Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 8:503–508. doi:10.1016/S0958-1669(97)80075-4

    CAS  PubMed  Google Scholar 

  • Reynolds GJ, Windels CE, MacRae IV, Laguette S (2012) Remote sensing for assessing Rhizoctonia crown and root rot severity in sugar beet. Plant Dis 96:497–505. doi:10.1094/PDIS-11-10-0831

    Google Scholar 

  • Rizzini FM, Bonghi C, Chkaiban L, Martinelli F, Tonutti P (2010) Effects of postharvest partial dehydration and prolonged treatments with ethylene on transcript profiling in skins of wine grape berries. Acta Hortic 877:1099–1104

    CAS  Google Scholar 

  • Robison BJ (1995) Use of commercially available ELISA kits for detection of foodborne pathogens. In: Howard J, Whitcombe DM (eds) Diagnostic bacteriology protocols. Humana Press, pp 123–132. doi:10.1385/0-89603-297-3:123

  • Rodriguez-Làzaro D, Hernàndez M, D’Agostino M, Cook N (2006) Application of nucleic acid sequence-based amplification for the detection of viable foodborne pathogens: progress and challenges. J Rapid Meth Aut Mic 14:218–236. doi:10.1111/j.1745-4581.2006.00048.x

    Google Scholar 

  • Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plümer L (2010) Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput Electron Agric 74:91–99. doi:10.1016/j.compag.2010.06.009

    Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13. doi:10.1016/j.compag.2010.02.007

    Google Scholar 

  • Schaad NW, Song W, Hutcheson S, Dane F (2001) Gene tagging systems for polymerase chain reaction based monitoring of bacteria released for biological control of weeds. Can J Plant Pathol 23:36–41. doi:10.1080/07060660109506906

    CAS  Google Scholar 

  • Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24:250–258. doi:10.1080/07060660209507006

    CAS  Google Scholar 

  • Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD, Luster DG (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Ann Rev Phytopathol 41:305–324. doi:10.1146/annurev.phyto.41.052002.095435

    CAS  Google Scholar 

  • Scholz BK, Jakobek JL, Lindgren PB (1994) Restriction fragment length polymorphism evidence for genetic homology within a pathovar of Pseudomonas syringae. Appl Environ Microbiol 60:1093–1100, aem.asm.org/content/60/4/1093. Accessed Apr 2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scortichini M, Marchesi U, Rossi MP, Di Prospero P (2001) Bacteria associated with hazelnut (Corylus avellana L.) decline are of two groups: Pseudomonas avellanae and strains resembling P. syringae pv. syringae. Applied Appl Environ Microbiol 68:476–484. doi:10.1128/AEM.68.2.476-484.2002

    Google Scholar 

  • Scuderi G, Golmohammadi M, Cubero J, López MM, Cirvilleri G, Llop P (2010) Development of a simplified NASBA protocol for detecting viable cells of the citrus pathogen Xanthomonas citri subsp. citri under different treatments. Plant Pathol 59:764–772. doi:10.1111/j.1365-3059.2010.02305.x

    CAS  Google Scholar 

  • Seiffert U, Schweizer P (2005) A pattern recognition tool for quantitative analysis of in planta hyphal growth of powdery mildew fungi. Mol Plant Microbe Interact 18:906–912. doi:10.1094/MPMI-18-0906

    CAS  PubMed  Google Scholar 

  • Shnaydeman M, Mansfield B, Yip P, Clark HA, Krebs MD, Cohen SJ et al. (2005) Species-species bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Anal Chem 77:5930–5937. doi:10.1021/ac050348i

    Google Scholar 

  • Sighicelli M, Colao F, Lai A, Patsaeva S (2009) Monitoring post-harvest orange fruit disease by fluorescence and reflectance hyperspectral imaging. Acta Hort 817:277–284

    Google Scholar 

  • Simmonds P, Zhang LQ, Watson HG, Rebus S, Ferguson ED, Balfe P et al. (1990) Hepatitis C quantification and sequencing in blood products, haemophiliacs, and drug users. Lancet 336:1469–1472. doi:10.1016/0140-6736(90)93179-S

    CAS  PubMed  Google Scholar 

  • Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (2000) Maskless fabrication of lightdirected oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 17:974–978. doi:10.1038/13664

    Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. doi:10.1126/science.4001944

    CAS  PubMed  Google Scholar 

  • Smith D, Spanel P (2005) Selected ion flow tube mass spectrometry (SIFT-MS) for on line trace gas analysis. Mass Spectrom Rev 24:661–700. doi:10.1002/mas.20033

    CAS  PubMed  Google Scholar 

  • Smith SE, Dickson S (1991) Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques. Aust J Plant Physiol 18:637–648. doi:10.1071/PP9910637

    Google Scholar 

  • Spanel P, Rolfe P, Rajan B, Smith D (1996) The selected ion flow tube (SIFT) a novel technique for biological monitoring. Ann Occup Hyg 40:615–626. doi:10.1016/S0003-4878(96)00028-2

    CAS  PubMed  Google Scholar 

  • Stilwell AR, Hein GL, Zygielbaum AI, Rundquist DC (2013) Proximal sensing to detect symptoms associated with wheat curl mite-vectored viruses. Intern J Remote Sens 34:4951–4966. doi:10.1080/01431161.2013.783945

    Google Scholar 

  • Szymańska E, Saccenti E, Smilde AK, Westerhuis JA (2012) Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 8:3–16. doi:10.1007/s11306-011-0330-3

    PubMed Central  PubMed  Google Scholar 

  • Taylor MT, Belgrader PB, Furman J, Pourahmadi F, Kovacs GTA, Northrup MA (2001) Lysing bacterial spores by sonication through a flexible interface in a microfluidics system. Anal Chem 73:492–496. doi:10.1021/ac000779v

    CAS  PubMed  Google Scholar 

  • Thelwell N, Millington S, Solinas A, Booth J, Brown T (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28:3752–3761. doi:10.1093/nar/28.19.3752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomlinson JA, Barker I, Boonham N (2007) Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Appl Environ Microbiol 73:4040–4047. doi:10.1128/AEM.00161-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres-Sánchez J, López-Granados F, de Castro-Megías AI, Peña-Barragán JM (2013) Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One 8(3):e58210. doi:10.1371/journal.pone.0058210

    PubMed Central  PubMed  Google Scholar 

  • Tosetti R, Martinelli F, Tonutti P (2012) Metabolomics approach to studying minimally processed peach (Prunus persica) fruit. Acta Hortic 934:1017–1022

    Google Scholar 

  • Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabolomics. J Prot Res 6:469–479. doi:10.1021/pr060594q

    CAS  Google Scholar 

  • van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, Schoen CD (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on open arrays. BMC Genom 14:276. doi:10.1186/1471-2164-8-276

    Google Scholar 

  • Van Vuurde JW, Ruissen MA, Vruggink H (1987) Principles and prospects of new serological techniques including immunosorbent immunofluorescence, immunoaffinity isolation and immunosorbent enrichment for sensitive detection of phytopathogenic bacteria. In: Civerolo EL, Collmer A, Davis RE, Gillaspie AG (eds) Plant Pathogenic Bacteria. Curr Plant Sci Biotech Agric 4:835–842

  • Varga A, James D (2006) Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Method 138:184–190. doi:10.1016/j.jviromet.2006.08.014

    CAS  Google Scholar 

  • Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16:125–141. doi:10.1016/0034-4257(84)90057-9

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Guo J, Ma Z (2012) Monitoring wheat stripe rust using remote sensing technologies in China. In: Li D, Chen Y (eds) Computer and computing technologies in agriculture V. Springer, pp 163–175

  • West JS, Bravo C, Oberti R, Lemaire D, Moshou D, McCartney HA (2003) The potential of optical canopy measurement for targeted control of field crop diseases. Ann Rev Phytopathol 41:593–614

    CAS  Google Scholar 

  • Woodcock CE, Strahler AH (1987) The factor of scale in remote sensing. Remote Sens Environ 21:311–332. doi:10.1016/0034-4257(87)90015-0

    Google Scholar 

  • Zhao W, Bhushan A, Simon M, Santamaria A, Davis CE (2008) Machine learning: a crucial tool for developing sensors. Algorithms 1:130–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Davis CE (2009) Swarm intelligence based wavelet coefficient feature selection for mass spectral classification: an application to proteomics data. (2009). Anal Chim Acta 651:15–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang CM, Cheng CH, Chen RK (2007) Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Sci 47:329–335. doi:10.2135/cropsci2006.05.0335

    CAS  Google Scholar 

  • Yang W, Chen J, Chen G, Wang S, Fu F (2013) The early diagnosis and fast detection of blast fungus, Magnaporthe grisea, in rice plant by using its chitinase as biochemical marker and a rice cDNA encoding mannose-binding lectin as recognition probe. Biosens Bioelectron 41:820–826. doi:10.1016/j.bios.2012.10.032

    CAS  PubMed  Google Scholar 

  • Yuan L, Huang Y, Loraamm RW, Nie C, Wang J, Zhang J (2014) Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crop Res 156:199–207. doi:10.1016/j.fcr.2013.11.012

    Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Morales A, Berjón A, Agüera J (2004) Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens Environ 90:463–476. doi:10.1016/j.rse.2004.01.017

    Google Scholar 

  • Zhang Z, Yang MJ, Pawliszyn J (1994) Solid-phase micro-extraction. Anal Chem 66:844–853. doi:10.1021/ac00089a716

    Google Scholar 

  • Zhang M, Qin Z, Liu X, Ustin SL (2003) Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Intern J Appl Earth Observ Geoinf 4:295–310. doi:10.1016/S0303-2434(03)00008-4

    Google Scholar 

  • Zhang J, Pu R, Loraamm RW, Yang G, Wang J (2014) Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Comput Electron Agr 100:79–87. doi:10.1016/j.compag.2013.11.001

    Google Scholar 

Download references

Acknowledgments

We are grateful to Chiara Nepi for providing iconographic materials. We thank Minghua Zhang and colleagues for permission to use their data in our Fig. 4 and Jorge Torres-Sánchez and colleagues for permission to use their picture in our Fig. 5. CED was supported by the California Citrus Research Board (CRB), the Industry-University Cooperative Research Program (UC Discovery), the Florida Citrus Production Advisory Council (FCPRAC), and the National Science Foundation (no. 1255915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Martinelli.

Glossary

HyMap

is a hyperspectral scanner that provides 128 bands across the reflective solar wavelength region of 0.45–2.5 μm with contiguous spectral coverage and bandwidths between 15 and 20 nm.

Omic

refers to a field of study in biology aiming at the collective characterization of pools of biological molecules that translate into the function of organisms.

Microarrays

integrate laboratory functions on a millimetric chip on a solid substrate (e.g., glass slide or silicon films) that assays large amounts of biological material using high-throughput screening miniaturized, multiplexed, and parallel processing and detection methods.

PROSPECT

is a radiative transfer model based on the Allen’ plate model used by remote sensing techniques.

RGB

is an additive color model in which red, green, and blue light is added together in various ways to reproduce a broad array of colors.

SYBR® Green

is an asymmetrical cyanine dye used as a nucleic acid which absorbs blue light (λ max = 497 nm) and emits green light (λ max = 520 nm).

Trascriptome

is used to address a specific object of a specific field of study in biology. It refers to the set of all RNA molecules produced in a population of cells. It differs from the exome, the sequences which when transcribed remain within the mature RNA after introns are removed by RNA splicing.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinelli, F., Scalenghe, R., Davino, S. et al. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35, 1–25 (2015). https://doi.org/10.1007/s13593-014-0246-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0246-1

Keywords

Navigation