Skip to main content
Log in

Effect of potassium chloride and calcium chloride induced stress on in vitro cultures of Bacopa monnieri (L.) Pennell and accumulation of medicinally important bacoside A

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Growth, osmotic adjustment, antioxidant enzyme defense and principle medicinal component bacoside A was studied in in vitro raised shoots of Bacopa monnieri under different concentrations of KCl and CaCl2 (0, 50, 100, 150 or 200 mM). Significant reduction was observed in shoot number per culture; shoot length, fresh weight, dry weight and tissue water content (TWC) when shoots were exposed to increasing KCl and CaCl2 concentrations (50–200 mM) as compared to control. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in control in contrast to sharp increase in KCl and CaCl2 stressed shoots. Higher amounts of free proline, glycine betaine and total soluble sugars (TSS) accumulated in KCl and CaCl2 exposed shoots compared to the controls. Among different concentrations of KCl and CaCl2, increasing concentration of CaCl2 showed more increase in osmolyte accumulation. Na+ content decreased with increasing concentrations of KCl and CaCl2. Accumulation of K+ increased significantly in KCl (50–100 mM) stressed shoots as compared to control, while it decreased in CaCl2 treated shoots indicating that it prevents the uptake of K+ ions. Ca2+ accumulation significantly increased with increasing concentrations of CaCl2 up to 150 mM but decreased at higher concentrations. Shoots treated with KCl and CaCl2 (0–100 mM) showed higher antioxidant enzyme (SOD, CAT, APX and GPX) activities but KCl suppressed the activities at higher concentrations. Accumulation of bacoside A was enhanced with an increase in KCl and CaCl2 concentration up to 100 mM. It appears from the data that accumulation of osmolytes, and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa and the two salts tested have a positive effect on bacoside accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

BA:

6-Benzyladenine

CAT:

Catalase

GPX:

Guaiacol peroxidase

MDA:

Malondialdehyde

MS:

Murashige and Skoog

NBT:

Nitroblue tetrazolium chloride

SOD:

Superoxide dismutase

TSS:

Total soluble sugars

TWC:

Tissue water content

References

  • Abraham G, Dhar DW (2010) Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma 245:105–111

    Article  PubMed  CAS  Google Scholar 

  • Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290

    Article  CAS  Google Scholar 

  • Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol Plant 53:243–248

    Article  CAS  Google Scholar 

  • Ahire ML, Lokhande VH, Kavi Kishor PB, Nikam TD (2012a) Brinjal (Solanum melongena Linn.) varieties accumulate both Na+ and K+ under low NaCl stress, but excludes Na+ and accumulate K+ under high salt levels. Asian Australian J Plant Sci Biotechnol 6:1–6

    Google Scholar 

  • Ahire ML, Patil PP, Kavi Kishor PB, Nikam TD (2012b) Micropropagation and assessment of antibiotic selection in vitro of Bacopa monniera (L.) Pennell. Int J Plant Dev Biol 6:34–39

    Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1998a) Effect of cadmium and copper on growth of Bacopa monniera regenerants. Biol Plant 41:635–639

    Article  CAS  Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1998b) Morphogenic response and proline content in Bacopa monniera cultures grown under copper stress. Plant Sci 138:191–195

    Article  CAS  Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1999) Proline accumulation, protein pattern and photosynthesis in Bacopa monniera regenerants grown under NaCl stress. Biol Plant 42:89–95

    Article  CAS  Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (2000) Influence of cadmium and zinc on growth and photosynthesis of Bacopa monniera cultivated in vitro. Biol Plant 43:599–601

    Article  CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2006) Copper-induced changes in the growth, oxidative metabolism and saponin production in suspension culture roots of Panax ginseng in bioreactors. Plant Cell Rep 25:1122–1132

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baatour O, Kaddour R, Wannes WA, Lachaâl M, Marzouk B (2010) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol Plant 32:45–51

    Article  CAS  Google Scholar 

  • Bates L, Waldren RP, Teare JD (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1986) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  Google Scholar 

  • Belkheiri O, Mulas M (2013) The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ Exp Bot 86:17–28

    Article  CAS  Google Scholar 

  • Benavente LM, Teixeira FK, Kamei CLA, Pinheiro MM (2004) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166:323–331

    Article  Google Scholar 

  • Binzel ML, Reuveni M (1994) Cellular mechanisms of salt tolerance in plant cells. Hort Rev 16:33–69

    CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007) Plants terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant cell Physiol 46:1924–1933

    Article  PubMed  CAS  Google Scholar 

  • Debnath M (2008) Responses of Bacopa monniera to salinity and drought stress in vitro. J Med Plants Res 2:347–351

    Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Bot 32:79–91

    Article  CAS  Google Scholar 

  • Elkahoui S, Hernandez JA, Abdelly C, Ghrir R, Limam F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613

    Article  CAS  Google Scholar 

  • Erturk U, Sivritepe N, Yerlikaya C, Bor M, Ozdemir F, Turkan I (2007) Responses of the cherry rootstock to salinity in vitro. Biol Plant 51:597–600

    Article  CAS  Google Scholar 

  • Flors V, Paradís M, García-Andrade J, Cerezo M, González-Bosch C (2007) A tolerant behavior in salt-sensitive tomato plants can be mimicked by chemical stimuli. Plant Signal Behav 2:50–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghorpade RP, Chopra A, Nikam TD (2011) Influence of biotic and abiotic elicitors on four major isomers of boswellic acid in callus culture of Boswellia serrata Roxb. Plant Omics J 4:169–176

    CAS  Google Scholar 

  • Gratten SR, Grieve CM (1994) Mineral element acquisition and response of plants grown in saline environments. In: Pessaraki M (ed) Handbook of plant and crop stress. Marcel Dekker, Inc., New York, pp 203–227

    Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photooxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

    Article  CAS  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hernández JA, Jiménez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Ann Rev Microbiol 57:395–418

    Article  CAS  Google Scholar 

  • Irigoyen J, Emerich D, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalafa (Medicago sativa) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GMA, Sridharan R, Panneerselvam R (2007) NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. C R Biol 330:806–813

    Article  PubMed  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85:237–254

    Article  PubMed  CAS  Google Scholar 

  • Jogeswar G, Pallela R, Jakka NM, Reddy PS, Rao JV, Sreeniwasulu N, Kavi Kishor PB (2006) Antioxidative response in different Sorghum species under short term salinity stress. Acta Physiol Plant 28:465–475

    Article  CAS  Google Scholar 

  • Kanashiro S, Ribeiro RCS, Gonçalves AN, Demétrio VA, Jocys T, Tavares AR (2009) Effect of calcium on the in vitro growth of Aechmea blanchetiana (Baker) L. B. Smith plantlets. J Plant Nutr 32:867–877

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu P (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backor M (2009) Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 18:544–554

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiology Monograph No. 1, Heron Publishing, Victoria, Canada, pp 1–29

  • Kumar V, Shriram V, Nikam TD, Jawali N, Shitole MG (2009) Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance. Arch Agron Soil Sci 55:379–394

    Article  CAS  Google Scholar 

  • Lin JN, Kao C (1998) Water stress, ammonium and leaf senescence in detached rice leaves. Plant Growth Regul 28:165–169

    Article  Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 102:17–25

    Article  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 104:41–49

    Article  CAS  Google Scholar 

  • Lowry OH, Roenbrough NJ, Farr AL, Randal EJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1996) NaCl induce senescence in leaves of rice (Oryza sativa) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Lv S, Nie LL, Fan PX, Wang XH, Jiang D, Chen XY, Li YX (2012) Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea. Acta Physiol Plant 34:503–513

    Article  CAS  Google Scholar 

  • Maathuis FJ, Amtmann A (1999) K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1996) Mechanism of potassium absorption by higher plant roots. Physiol Plant 96:158–168

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Martinez JP, Stanley L, Schanck A (2004) Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L.? J Plant Physiol 161:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Meloni DA, Martínez CA (2009) Glycine betaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedling. Braz J Plant Physiol 21:233–241

    Google Scholar 

  • Molassiotis AN, Sotiropoulos T, Tanou G, Kofidis G, Diamantidis G, Therios I (2006) Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biol Plant 50:331–338

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Parale A, Barmukh R, Nikam T (2010) Influence of organic supplements on production of shoots and callus biomass and accumulation of bacoside in Bacopa monniera (L.) Pennell. Physiol Mol Biol Plants 16:167–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plant: a review. Ecotoxicol Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  PubMed  CAS  Google Scholar 

  • Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttge V (eds) Salinity: Environment - plants molecules. Kluwer, The Netherlands, pp 3–20

    Google Scholar 

  • Rascio A, Russo M, Mazzucco L, Platani C, Nicastro G, Fonzo ND (2001) Enhanced osmotolerance of a wheat mutant selected for potassium accumulation. Plant Sci 160:441–448

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular land plants: costs and benefits in relation to efficiency of use of water, energy and nitrogen. New Phytol 101:25–77

    Article  CAS  Google Scholar 

  • Rios-Gonzales K, Erdei L, Lips SH (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162:923–930

    Article  Google Scholar 

  • Sabir F, Sangwan RS, Kumar R, Sangwan NS (2012) Salt stress-induced responses in growth and metabolism in callus cultures and differentiating in vitro shoots of Indian ginseng (Withania somnifera Dunal). J Plant Growth Regul 31:537–548

    Article  CAS  Google Scholar 

  • Salama S, Trivedi S, Busheva M, Arafa A, Garab G, Erdei L (1994) Effects of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. J Plant Physiol 144:241–247

    Article  CAS  Google Scholar 

  • Sangwan NS, Farooqi AHA, Sangwan RS (1994) Effect of drought on growth and essential oil metabolism in lemongrass species. New Phytol 128:173–179

    Article  Google Scholar 

  • Santos CLV, Campos A, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 52:351–360

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 343–406

    Google Scholar 

  • Sekmen AH, Türkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime L. and salt-sensitive Plantago media L. Physiol Plant 131:399–411

    Article  PubMed  CAS  Google Scholar 

  • Sergio L, Paola AD, Cantore V, Pieralice M, Cascarano NA, Bianco VV, Venere DD (2012) Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol Plant 34:2349–2358

    Article  CAS  Google Scholar 

  • Shalata A, Tal M (1998) The effects of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 104:169–174

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Sinauer Associates Inc, Sunderland, p 115

    Google Scholar 

  • Tarchoune I, Degl’Innocenti E, Kaddour R, Guidi L, Lachaâl M, Navari-Izzo F, Ouerghi Z (2012) Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiol Plant 34:607–615

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa L.) – differential response in salt tolerant and sensitive cultivars. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730

    Article  PubMed  CAS  Google Scholar 

  • Watoo P, Waraporn P, Hiroyuki T, Kanchalee J, Sakchai W, Kornkanok I (2007) Comparison of various extraction methods of Bacopa monniera. Naresuan Univ J 15:29–34

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the Department of Botany, University of Pune, under UGC, SAP-DRS III program sanctioned by UGC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Nikam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahire, M.L., Laxmi, S., Walunj, P.R. et al. Effect of potassium chloride and calcium chloride induced stress on in vitro cultures of Bacopa monnieri (L.) Pennell and accumulation of medicinally important bacoside A. J. Plant Biochem. Biotechnol. 23, 366–378 (2014). https://doi.org/10.1007/s13562-013-0220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-013-0220-z

Keywords

Navigation