Skip to main content
Log in

Growth of ZnO Nanostructures on Porous Silicon and Oxidized Porous Silicon Substrates

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We have investigated an oxidation of substrate effect on structural morphology of zinc oxide (ZnO) rods. ZnO rods are grown on porous silicon (PS) and on thermally oxidized porous silicon substrates by carbothermal reduction of ZnO powder through chemical vapour transport and condensation. Porous silicon is fabricated by electrochemical etching of silicon in hydrofluoric acid solution. The effects of substrates on morphology and structure of ZnO nanostructures have been studied. The morphology of substrates is studied by atomic force microscopy in contact mode. The texture coefficient of each sample is calculated from X-ray diffraction data that demonstrate random orientation of ZnO rods on oxidized porous silicon substrate. The morphology of structures is investigated by scanning electron microscopy that confirms the surface roughness tends to increase the growth rate of ZnO rods on oxidized PS compared with porous silicon substrate. A green emission has been observed in ZnO structures grown on oxidized PS substrates by photoluminescence measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yhshio, D. Golberg, Sensors 9, 6504–6529 (2009)

    Article  Google Scholar 

  2. L. Tsakalakos, Mater. Sci. Eng. R 62, 175–189 (2008)

    Article  Google Scholar 

  3. Z.L. Wang, J. Phys.: Condens. Matter 16, R829–R858 (2004)

    Article  ADS  Google Scholar 

  4. Y. Hsu, Y.Y. Xi, A.B. Djurisic, W.K. Chan, Appl. Phys. Lett. 92, 133507 (2008)

    Article  ADS  Google Scholar 

  5. K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, J. Alloys Compd. 479, 674–677 (2009)

    Article  Google Scholar 

  6. A.B. Djurisic, A.M.C. Ng, X.Y. Chen, Prog. Quantum Electron. 34, 191–259 (2010)

    Article  ADS  Google Scholar 

  7. S. Guha, N.A. Bojarczuk, Appl. Phys. Lett. 73, 1487–1489 (1998)

    Article  ADS  Google Scholar 

  8. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003–1009 (2007)

    Article  ADS  Google Scholar 

  9. L.T. Canham, Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  ADS  Google Scholar 

  10. H.C. Hsu, C.S. Cheng, C.C. Chang, S. Yang, C.S. Chang, W.F. Hsieh, Nanotechnology 16, 297–301 (2005)

    Article  ADS  Google Scholar 

  11. J.S. Lee, M.I. Kang, S. Kim, M.S. Lee, Y.K. Lee, J. Cryst. Growth 249, 201–207 (2003)

    Article  ADS  Google Scholar 

  12. P. Yang, C.M. Lieber, J. Mater. Res. 12, 2981–2996 (1997)

    Article  ADS  Google Scholar 

  13. C.S. Solanki, R.R. Bilyalov, J. Poortmans, J. Nijs, R. Mertens, Sol. Energy Mater. Sol. Cells 83, 101–113 (2004)

    Article  Google Scholar 

  14. J.P. Kar, M.H. Ham, S.W. Lee, J.M. Myoung, Appl. Surf. Sci. 255, 4087–4092 (2009)

    Article  ADS  Google Scholar 

  15. R.G. Singh, F. Singh, V. Agarwal, R.M. Mehra, J. Phys. D: Appl. Phys. 40, 3090–3093 (2007)

    Article  ADS  Google Scholar 

  16. C. Shaoqiang, Z. Jian, F. Xiao, W. Xiahua, L. Laiqiang, S. Yanling, X. Qingsong, W. Chang, Z. Jianzhong, Z. Ziqiang, Appl. Surf. Sci. 241, 384–391 (2008)

    Article  ADS  Google Scholar 

  17. H. Elhouichet, M. Oueslati, Mater. Sci. Eng. B 79, 27–30 (2001)

    Article  Google Scholar 

  18. P. Prabarkaran, M. Peres, T. Monteiro, E. Fortunato, R. Martins, I. Ferreira, J. Non-Cryst. Solids 345, 2181–2185 (2008)

    Article  ADS  Google Scholar 

  19. C.C. Chang, C.S. Chang, Jpn. J. Appl. Phys. 43, 8360–8364 (2004)

    Article  ADS  Google Scholar 

  20. K. Yu, Y. Zhang, L. Luo, W. Wang, Z. Zhu, J. Wang, Y. Cui, H. Ma, W. Lu, Appl. Phys. A 79, 443–446 (2004)

    Article  ADS  Google Scholar 

  21. K. Yu, Y. Zhang, L. Luo, S. Ouyang, H. Geng, Z. Zhu, Mater. Lett. 59, 3525–3529 (2005)

    Article  Google Scholar 

  22. K. Yu, Y. Zhang, R. Xu, D, Jiang, L. Luo, Q. Li, Z. Zhu, W. Lu, Solid State Commun. 133, 43–47 (2005)

    Article  ADS  Google Scholar 

  23. M. Rajabi, R.S. Dariani, J. Porous Mater. 16, 513–519 (2009)

    Article  Google Scholar 

  24. C. Ye, X. Fang, Y. Hao, X. Teng, L. Zhang, J. Phys. Chem. B 109, 19758–19765 (2005)

    Article  Google Scholar 

  25. M.K. Patra, K. Manzoor, M. Manoth, S.P. Vadera, N. Kumar, J. Lumin. 128, 267–272 (2008)

    Article  Google Scholar 

  26. A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104, 1715–1723 (2000)

    Article  Google Scholar 

  27. B. Sieber, A. Addad, S. Szunerits, R. Boukherroub, J. Phys. Chem. Lett. 1, 3033–3038 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Dariani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajabi, M., Dariani, R.S. & Iraji zad, A. Growth of ZnO Nanostructures on Porous Silicon and Oxidized Porous Silicon Substrates. Braz J Phys 41, 113–117 (2011). https://doi.org/10.1007/s13538-011-0020-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-011-0020-7

Keywords

Navigation