Biomedical Engineering Letters

, Volume 2, Issue 1, pp 2–7

Inverse source imaging methods in recovering distributed brain sources

Review Article

DOI: 10.1007/s13534-012-0047-x

Cite this article as:
Ding, L. & Yuan, H. Biomed. Eng. Lett. (2012) 2: 2. doi:10.1007/s13534-012-0047-x
  • 57 Downloads

Abstract

Over the past decades tremendous efforts have been made in developing functional neuroimaging techniques to better understand human brain functions in both normal and diseased states. Towards this goal, it is essential to develop a technique that can noninvasively image human brain activity with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are important tools for studying the human brain’s large-scale neuronal dynamics, thanks to their millisecond temporal resolution. However, EEG and MEG are limited in providing spatial information concerning the location of active sources in the brain. Localizing the sources of EEG/MEG dynamics can be achieved by the so-called electrophysiological source imaging techniques. Recently, there has been a growing interest in source imaging techniques in recovering distributed brain sources. Such distributed source imaging techniques have been advanced in many aspects, including the forward modeling and the inverse imaging, and have been shown promising in many neuroscience and clinical applications. This paper reviews the basic principles, recent advancements and applications of the distributed source imaging techniques.

Keywords

EEG MEG Functional neuroimaging Electrophysiological source imaging Distributed sources 

Copyright information

© © Korean Society of Medical and Biological Engineering and Springer 2012

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringUniversity of OklahomaNormanUSA
  2. 2.Center for Biomedical EngineeringUniversity of OklahomaNormanUSA
  3. 3.Han Yuan Laureate Institute for Brain ResearchTulsaUSA

Personalised recommendations