Skip to main content
Log in

Using an Artificial Neural Network to Predict Mix Compositions of Steel Fiber-Reinforced Concrete

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An artificial neural network (ANN) has a wide application field for mathematical problems. Specifically, an ANN is successfully applied to problems that are difficult to solve or do not have any information on their operating techniques. In this article, an ANN was applied to predict the concrete mix composition for steel fiber-reinforced concrete (SFRC). Thus, an ANN model was developed and trained with data collected from literature. These data have SFRC mix compositions, workability measurements of fresh SFRC, compressive strength of SFRCs, and additional information that affects concrete quality. Additionally, the ANN included steel fiber volume fraction in the SFRC and steel fiber properties. With the goal of determining the concrete mix composition, which is cement dosage, amount of water, coarse aggregate content, fine aggregate content, and chemical admixture, an ANN model was developed. The inputs for the ANN were consistency class of SFRC, compressive strength of SFRC, maximum size of aggregate, steel fiber volume fraction, steel fiber length, and diameter. At the end of the study, a feed forward ANN model with six inputs and five outputs was successfully trained and used to produce the correct responses to testing data. Designing SFRC requires more trial mixtures to obtain the desired quality than does conventional concrete. In conclusion, artificial neural networks have a strong potential for predicting concrete mix composition for SFRC such that without trial mixes and loss of time, an SFRC design is possible with the desired workability and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mehta P.K., Monteiro P.J.M.: Concrete: Microstructure, Properties and Materials. McGraw-Hill, New York (2006)

    Google Scholar 

  2. ACI Committee 544. State-of-the-art report on fiber reinforced concrete. ACI 544.1R-96 (Reapproved 2005), Manual of Concrete Practice. American Concrete Institute, Michigan (2002)

  3. Bentur A., Mindess S.: Fiber Reinforced Cementitious Composites. Elsevier Science Publishing, New York (2005)

    Google Scholar 

  4. Ince R.: Prediction of fracture parameters of concrete by artificial neural networks. Eng. Fract. Mech. 71, 2143–2159 (2004)

    Article  Google Scholar 

  5. Sarıdemir M.: Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv. Eng. Softw. (2009). doi:10.1016/j.advengsoft.2008.05.002

    Google Scholar 

  6. Sarıdemir M.: Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Adv. Eng. Softw. (2009). doi:10.1016/j.advengsoft.2008.12.008

    Google Scholar 

  7. Bilim C., Atis C.D., Tanyildizi H., Karahan O.: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv. Eng. Softw. (2009). doi:10.1016/j.advengsoft.2008.05.005

    MATH  Google Scholar 

  8. Boukli Hacene S.M.A., Ghomari F., Schoefs F., Khelidj A.: Probabilistic modelling of compressive strength of concrete using response surface methodology and neural networks. Arab. J. Sci. Eng. (2014). doi:10.1007/s13369-014-1139-y

    Google Scholar 

  9. Sahin U., Bedirhanoglu I.: A fuzzy model approach to stress–strain relationship of concrete in compression. Arab. J. Sci. Eng. (2014). doi:10.1007/s13369-014-1170-z

    Google Scholar 

  10. BingölA.F.; Tortum A., Gül R.: Neural networks analysis of compressive strength of lightweight concrete after high temperatures. Mater. Des. (2013). doi:10.1016/j.matdes.2013.05.022

    Google Scholar 

  11. Topcu I.B., Sarıdemir M.: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. (2008). doi:10.1016/j.commatsci.2007.04.009

    Google Scholar 

  12. Sarıdemir, M.; Topçu, I.B.; Özcan, F.; Severcan, M.H.: Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic. Constr. Build. Mater. (2009). doi:10.1016/j.commatsci.2007.04.009

  13. Uysal M., Tanyildizi H.: Estimation of compressive strength of self-compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr. Build. Mater. (2012). doi:10.1016/j.conbuildmat.2011.07.028

    MATH  Google Scholar 

  14. Ren L., Zhao Z.: An optimal neural network and concrete strength modeling. Adv. Eng. Softw. (2002). doi:10.1016/S0965-9978(02)00005-4

    Google Scholar 

  15. Özcan, F.; Atis, C.D.; Karahan, O.; Uncuoglu, E.; Tanyildizi, H.: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete.Adv. Eng. Softw. (2009). doi:10.1016/j.advengsoft.2009.01.005

  16. Topcu I.B., Sarıdemir M.: Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput. Mater. Sci. (2007). doi:10.1016/j.commatsci.2007.03.010

    Google Scholar 

  17. Topcu I.B., Sarıdemir M.: Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Constr. Build. Mater. (2008). doi:10.1016/j.conbuildmat.2006.11.007

    Google Scholar 

  18. Topcu I.B., Sarıdemir M.: Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Comput. Mater. Sci. (2008). doi:10.1016/j.commatsci.2007.06.011

    Google Scholar 

  19. Bai J., Wild S., Ware J.A., Sabir B.B.: Using neural networks to predict workability of concrete incorporating metakaolin and fly ash. Adv. Eng. Softw. (2003). doi:10.1016/S0965-9978(03)00102-9

    Google Scholar 

  20. Gencel O., Kocabas F., Gok M.S., Koksal F.: Comparison of artificial neural networks and general linear model approaches for the analysis of abrasive wear of concrete. Constr. Build. Mater. (2011). doi:10.1016/j.conbuildmat.2011.03.040

    Google Scholar 

  21. Chandwani V., Agrawal V., Nagar R.: Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Syst. Appl. (2015). doi:10.1016/j.eswa.2014.08.048

    Google Scholar 

  22. Ji T., Lin T., Lin X.: A concrete mix proportion design algorithm based on artificial neural networks. Cem. Concr. Res. (2006). doi:10.1016/j.cemconres.2006.01.009

    Google Scholar 

  23. Altun F., Kişi O., Aydin K.: Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput. Mater. Sci. (2008). doi:10.1016/j.commatsci.2007.07.011

    Google Scholar 

  24. Ashrafi H.R., Jalal M., Garmsiri K.: Prediction of load–displacement curve of concrete reinforced by composite fibers (steel and polymeric) using artificial neural network. Expert Syst. Appl. (2010). doi:10.1016/j.eswa.2010.04.076

    Google Scholar 

  25. Padmarajaiah S.K., Ramaswamy A.: Flexural strength predictions of steel fiber reinforced high-strength concrete in fully/partially prestressed beam specimens. Cem. Concr. Compos. (2004). doi:10.1016/S0958-9465(02)00121-X

    Google Scholar 

  26. Kumar S., Barai S.V.: Neural networks modeling of shear strength of SFRC corbels without stirrups. Appl. Soft Comput. (2010). doi:10.1016/j.asoc.2009.06.012

    Google Scholar 

  27. Adhikary B.B., Mutsuyoshi H.: Prediction of shear strength of steel fiber RC beams using neural networks. Constr. Build. Mater. (2006). doi:10.1016/j.conbuildmat.2005.01.047

    Google Scholar 

  28. Köksal F., Şahin Y., Beycioğlu A., Gencel O., Brostow W.: Estimation of fracture energy of high strength steel fiber reinforced concrete using rule based mamdani type fuzzy inference system. Sci. Eng. Compos. Mater. (2012). doi:10.1515/secm-2012-0017

    Google Scholar 

  29. Brandt A.M.: Fiber reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. (2008). doi:10.1016/j.compstruct.2008.03.006

    Google Scholar 

  30. Romualdi J.P., Batson G.B.: Mechanics of crack arrest in concrete. J. Eng. Mech. Div. ASCE Proc. 89, 147–168 (1963)

    Google Scholar 

  31. Romualdi J.P., Mandel J.A.: Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. J. ACI 61(6), 657–671 (1964)

    Google Scholar 

  32. Banthia N., Sappakittipakorn M.: Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cem. Concr. Res. (2007). doi:10.1016/j.cemconres.2007.05.005

    Google Scholar 

  33. Nataraja M.C., Dhang N., Gupta A.P.: Stress–strain curves for steel-fiber reinforced concrete under compression. Cem. Concr. Compos. (1999). doi:10.1016/S0958-9465(99)00021-9

    Google Scholar 

  34. Gopalaratnam V.S., Gettu R.: On the characterization of flexural toughness in fiber reinforced concretes. Cem. Concr. Compos. (1995). doi:10.1016/0958-9465(95)99506-O

    Google Scholar 

  35. Uygunoglu T.: Effect of fiber type and content on bleeding of steel fiber reinforced concrete. Constr. Build. Mater. (2011). doi:10.1016/j.conbuildmat.2010.07.008

    Google Scholar 

  36. Mohammadi Y., Singh S.P., Kaushik S.K.: Properties of steel fibrous concrete containing mixed fibers in fresh and hardened state. Constr. Build. Mater. (2008). doi:10.1016/j.conbuildmat.2006.12.004

    Google Scholar 

  37. Shah S.P., Rangan B.V.: Fiber reinforced concrete properties. ACI J. Proc. 68, 126–135 (1971)

    Google Scholar 

  38. Chen W.F., Carson J.L.: Stress–strain properties of random wire reinforced concrete. ACI J. Proc. 68, 797–804 (1971)

    Google Scholar 

  39. Altun F., Haktanir T., Ari K.: Effects of steel fiber addition on mechanical properties of concrete and RC beams. Constr. Build. Mater. (2007). doi:10.1016/j.conbuildmat.2005.12.006

    Google Scholar 

  40. Olivito R.S., Zuccarello F.A.: An experimental study on the tensile strength of steel fiber reinforced concrete. Compos. Part B (2010). doi:10.1016/j.compositesb.2009.12.003

    Google Scholar 

  41. Parichatprecha R., Nimityongskul P.: Analysis of durability of high performance concrete using artificial neural networks. Constr. Build. Mater. (2009). doi:10.1016/j.conbuildmat.2008.04.015

    Google Scholar 

  42. Elmas C.: Artificial Intelligence Applications. Seckin, Ankara (in Turkish) (2007)

    Google Scholar 

  43. Oztas A., Pala M., Ozbay E., Kanca E., Caglar N., Bhatti M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. (2006). doi:10.1016/j.conbuildmat.2005.01.054

    Google Scholar 

  44. Topcu I.B., Karakurt C., Sarıdemir M.: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic. Mater. Des. (2008). doi:10.1016/j.matdes.2008.04.005

    Google Scholar 

  45. Gencel O.: The application of artificial neural networks technique to estimate mass attenuation coefficient of shielding barrier. Int. J. Phys Sci. 4(12), , 743–751 (2009)

    Google Scholar 

  46. Mukherjee A., Biswas S.N.: Artificial neural networks prediction of mechanical behavior of concrete at high temperature. Nucl. Eng. Des. (1997). doi:10.1016/S0029-5493(97)00152-0

    Google Scholar 

  47. Pala M., Ozbay E., Oztas A., Yuce M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. (2007). doi:10.1016/j.conbuildmat.2005.08.009

    Google Scholar 

  48. Koksal F., Ilki A., Tasdemir M.A.: Optimum mix design of steel-fibre-reinforced concrete plates. Arab. J. Sci. Eng. (2013). doi:10.1007/s13369-012-0468-y

    Google Scholar 

  49. Yalcin, M.: Optimization and Performance Based Design of Steel Fiber Reinforced Concretes. Doctoral thesis, Istanbul Technic University, Civil Engineering Faculty (1994)

  50. Nili M., Afroughsabet V.: Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Eng. (2010). doi:10.1016/j.ijimpeng.2010.03.004

    Google Scholar 

  51. Nguyen-Minh, L.; Rovnak, M.; Tran-Quoc, T.; Nguyenkim, K.: Punching Shear Resistance of Steel Fiber Reinforced Concrete Flat Slabs. In: Proceedings of The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction. Procedia Engineering. (2011). doi: 10.1016/j.proeng.2011.07.230

  52. Ibrahim, I.S.; Che Bakar, M.B.: Effects on mechanical properties of industrialised steel fibers addition to normal weight concrete. In: Proceedings of The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction. Procedia Engineering. (2011). doi: 10.1016/j.proeng.2011.07.329

  53. Eren O., Marar K.: Effects of limestone crusher dust and steel fibers on concrete. Constr. Build. Mater. (2009). doi:10.1016/j.conbuildmat.2008.05.014

    Google Scholar 

  54. Sahin Y., Koksal F.: The influences of matrix and steel fiber tensile strengths on the fracture energy of high-strength concrete. Constr. Build. Mater. (2011). doi:10.1016/j.conbuildmat.2010.11.084

    Google Scholar 

  55. Buratti N., Mazzotti C., Savoia M.: Post-cracking behaviour of steel and macro-synthetic fiber-reinforced concretes. Constr. Build. Mater. (2011). doi:10.1016/j.conbuildmat.2010.12.022

    MATH  Google Scholar 

  56. Lau A., Anson M.: Effect of high temperatures on high performance steel fiber reinforced concrete. Cem. Concr. Res. (2006). doi:10.1016/j.cemconres.2006.03.024

    Google Scholar 

  57. Shakya K., Watanabe K., Matsumoto K., Niwa J.: Application of steel fibers in beam–column joints of rigid-framed railway bridges to reduce longitudinal and shear rebars. Constr. Build. Mater. (2012). doi:10.1016/j.conbuildmat.2011.07.016

    Google Scholar 

  58. Soulioti D.V., Barkoula N.M., Paipetis A., Matikas T.E.: Effects of fiber geometry and volume fraction on the flexural behaviour of steel-fiber reinforced concrete. Strain (2011). doi:10.1111/j.1475-1305.2009.00652.x

    Google Scholar 

  59. Unal O., Demir F., Uygunoglu T.: Fuzzy logic approach to predict stress–strain curves of steel fiber-reinforced concretes in compression. Build. Environ. (2007). doi:10.1016/j.buildenv.2006.10.023

    Google Scholar 

  60. Carmona S., Aguado A., Molins C.: Characterization of the properties of steel fiber reinforced concrete by means of the generalized Barcelona test. Constr. Build. Mater. (2013). doi:10.1016/j.conbuildmat.2013.07.060

    Google Scholar 

  61. Cantin R., Pigeon M.: Deicer salt scaling resistance of steel-fiber-reinforced concrete. Cem. Concr. Res. (1996). doi:10.1016/S0008-8846(96)00162-7

    Google Scholar 

  62. Pigeon M., Cantin R.: Flexural properties of steel fiber-reinforced concretes at low temperatures. Cem. Concr. Compos. (1998). doi:10.1016/S0958-9465(98)00017-1

    Google Scholar 

  63. TS 802. Design Concrete Mixes. Turkish Standards Institutions, Ankara (2009)

  64. ASTM C685/C685M. Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing. Annual Book of ASTM Standards, USA (2011)

  65. ACI Committee 211. Standard practice for selecting proportions for normal, heavyweight, and mass concrete. ACI 211.1-91 (Reapproved 2009), ACI Manual of Concrete Practice. American Concrete Institute, Michigan (1996)

  66. Erdogan T.Y.: Concrete. METU Press, Ankara (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kürşat Esat Alyamaç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Açikgenç, M., Ulaş, M. & Alyamaç, K.E. Using an Artificial Neural Network to Predict Mix Compositions of Steel Fiber-Reinforced Concrete. Arab J Sci Eng 40, 407–419 (2015). https://doi.org/10.1007/s13369-014-1549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1549-x

Keywords

Navigation