Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry

, Volume 52, Issue 2, pp 349–355

Lie ideals and centralizing generalized derivations of rings with involution

Authors

    • Département de Mathématiques, Faculté des Sciences et Techniques, Groupe d’Algèbre et ApplicationsUniversité Moulay Ismaïl
Open AccessOriginal Paper

DOI: 10.1007/s13366-011-0058-2

Cite this article as:
Oukhtite, L. Beitr Algebra Geom (2011) 52: 349. doi:10.1007/s13366-011-0058-2
  • 377 Views

Abstract

A classical result of Posner states that the existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative. In this paper we extend the posner’s result to the case of generalized derivations centralizing on Lie ideals of rings with involution.

Keywords

Rings with involutionGeneralized derivations

Mathematics Subject Classification (2000)

16W1016W2516N60
Download to read the full article text

Copyright information

© The Author(s) 2011