Generalized inflection points of very general effective divisors on smooth curves

Original Paper

DOI: 10.1007/s13366-011-0016-z

Cite this article as:
Coppens, M. Beitr Algebra Geom (2011) 52: 125. doi:10.1007/s13366-011-0016-z


Let E be a very general effective divisor of degree d on a smooth curve C of genus g. We study inflection points on linear systems |aE | for an integer a ≥ 1. They are called generalized inflection points of the invertible sheaf \({\mathcal{O}_C(E)}\). In case \({P\notin E}\) is a generalized inflection point of \({\mathcal{O}_C(E)}\) then it is a normal generalized inflection point. In case \({P\in E}\) then P has minimal vanishing sequences for E.


Curve Linear system Inflection point 

Mathematics Subject Classification (2000)

14H51 14H55 

Copyright information

© The Managing Editors 2011

Authors and Affiliations

  1. 1.Departement Industrieel Ingenieur en BiotechniekKatholieke Hogeschool KempenGeelBelgium
  2. 2.Dept. Wiskunde Groep AlgebraK.U. LeuvenGeelBelgium

Personalised recommendations