Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry

, Volume 52, Issue 1, pp 125–132

Generalized inflection points of very general effective divisors on smooth curves

Authors

    • Departement Industrieel Ingenieur en BiotechniekKatholieke Hogeschool Kempen
    • Dept. Wiskunde Groep AlgebraK.U. Leuven
Original Paper

DOI: 10.1007/s13366-011-0016-z

Cite this article as:
Coppens, M. Beitr Algebra Geom (2011) 52: 125. doi:10.1007/s13366-011-0016-z
  • 45 Views

Abstract

Let E be a very general effective divisor of degree d on a smooth curve C of genus g. We study inflection points on linear systems |aE | for an integer a ≥ 1. They are called generalized inflection points of the invertible sheaf \({\mathcal{O}_C(E)}\). In case \({P\notin E}\) is a generalized inflection point of \({\mathcal{O}_C(E)}\) then it is a normal generalized inflection point. In case \({P\in E}\) then P has minimal vanishing sequences for E.

Keywords

CurveLinear systemInflection point

Mathematics Subject Classification (2000)

14H5114H55

Copyright information

© The Managing Editors 2011