Skip to main content
Log in

NCO, a Key Fragment Upon Dissociative Electron Attachment and Electron Transfer to Pyrimidine Bases: Site Selectivity for a Slow Decay Process

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

We report gas phase studies on NCO fragment formation from the nucleobases thymine and uracil and their N-site methylated derivatives upon dissociative electron attachment (DEA) and through electron transfer in potassium collisions. For comparison, the NCO production in metastable decay of the nucleobases after deprotonation in matrix assisted laser desorption/ionization (MALDI) is also reported. We show that the delayed fragmentation of the dehydrogenated closed-shell anion into NCO upon DEA proceeds few microseconds after the electron attachment process, indicating a rather slow unimolecular decomposition. Utilizing partially methylated thymine, we demonstrate that the remarkable site selectivity of the initial hydrogen loss as a function of the electron energy is preserved in the prompt as well as the metastable NCO formation in DEA. Site selectivity in the NCO yield is also pronounced after deprotonation in MALDI, though distinctly different from that observed in DEA. This is discussed in terms of the different electronic states subjected to metastable decay in these experiments. In potassium collisions with 1- and 3-methylthymine and 1- and 3-methyluracil, the dominant fragment is the NCO ion and the branching ratios as a function of the collision energy show evidence of extraordinary site-selectivity in the reactions yielding its formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L.: Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 1658–1660 (2000)

    Article  Google Scholar 

  2. Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., Sanche, L.: DNA strand breaks induced by 0–4 eV electrons: The role of shape resonances. Phys. Rev. Lett. 93, 068101-1–068101-4 (2004)

    Google Scholar 

  3. Alizadeh, E., Sanche, L.: Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 12, 5578–5602 (2012)

    Article  Google Scholar 

  4. Baccarelli, I., Bald, I., Gianturco, F.A., Illenberger, E., Kopyra, J.: Electron-induced damage of DNA and its components: experiments and theoretical models. Phys. Rep. 508, 1–44 (2011)

    Article  CAS  Google Scholar 

  5. Bald, I., Langer, J., Tegeder, P., Ingólfsson, O.: From isolated molecules through clusters and condensates to the building blocks of life. A short tribute to Professor Eugen Illenberger's work in the field of negative ion chemistry. Int. J. Mass Spectrom. 277, 4–25 (2008)

    Article  CAS  Google Scholar 

  6. Sanche, L.: Role of secondary low energy electrons in radiobiology and chemoradiation therapy of cancer. Chem. Phys. Lett. 474, 1–6 (2009)

    Article  CAS  Google Scholar 

  7. Baccarelli, I., Gianturco, F.A., Scifoni, E., Solov’yov, A.V., Surdutovich, E.: Molecular level assessments of radiation biodamage. Eur. Phys. J. D 60, 1–10 (2010)

    Article  CAS  Google Scholar 

  8. Simons, J.: How do low-energy (0.1–2 eV) electrons cause DNA-strand breaks? Acc. Chem. Res. 39, 772–779 (2006)

    Article  CAS  Google Scholar 

  9. Gu, J., Leszcynski, J., Schaeffer III, H.F.: Interactions of electrons with bare and hydrated biomolecules: from nucleic acid bases to DNA segments. Chem. Rev. 112, 5603–5640 (2012)

    Article  CAS  Google Scholar 

  10. Orlando, T.M., Oh, D., Chen, Y., Aleksandrov, A.B.: Low-energy electron diffraction and induced damage in hydrated DNA. J. Chem. Phys. 128, 195102-1–195102-7 (2008)

    Article  Google Scholar 

  11. Abdoul-Carime, H., Gohlke, S., Illenberger, E.: Site-specific dissociation of DNA bases by slow electrons at early stages of irradiation. Phys. Rev. Lett. 92, 168103-1–168103-4 (2004)

    Article  Google Scholar 

  12. Ptasinska, S., Denifl, S., Grill, V., Märk, T.D., Illenberger, E., Scheier, P.: Bond- and site-selective loss of H- from pyrimidine bases. Phys. Rev. Lett. 95, 093201-1–093201-4 (2005)

    Google Scholar 

  13. Ptasinska, S., Denifl, S., Grill, V., Märk, T.D., Scheier, P., Gohlke, S., Huels, M., Illenberger, E.: Bond-selective H-ion abstraction from thymine. Angew. Chem. Int. Ed. 44, 1647–1650 (2005)

    Article  CAS  Google Scholar 

  14. Prabhudesai, V.S., Kelkar, A.H., Nandi, D., Krishnakumar, E.: Functional group-dependent site-specific fragmentation of molecules by low energy electrons. Phys. Rev. Lett. 95, 143202-1–143202-4 (2005)

    Article  Google Scholar 

  15. Sloan, P.A., Palmer, R.E.: Two-electron dissociation of single molecules by atomic manipulation at room temperature. Nature 434, 367–371 (2005)

    Article  CAS  Google Scholar 

  16. Riedel, D., Bocquet, M.-L., Lesnard, H., Lastapis, M., Lorente, N., Sonnet, P., Dujardin, G.: Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface. J. Am. Chem. Soc. 131, 7344–7352 (2009)

    Article  CAS  Google Scholar 

  17. Ning, Z., Polanyi, J.C.: Charge delocalization induces reaction in molecular chains at a surface. Angew. Chem. Int. Ed. 52, 320–324 (2013)

    Article  CAS  Google Scholar 

  18. Ptasinska, S., Denifl, S., Gohlke, S., Scheier, P., Illenberger, E., Märk, T.D.: Decomposition of thymidine by low-energy electrons: Implications for the molecular mechanisms of single-strand breaks in DNA. Angew. Chem. Int. Ed. 45, 1893–1896 (2006)

    Article  CAS  Google Scholar 

  19. Baccarelli, I., Gianturco, F.A., Grandi, A., Sanna, V., Lucchese, R.R., Bald, I., Kopyra, J., Illenberger, E.: Selective bond breaking in beta-D-ribose by gas-phase electron attachment around 8 eV. J. Am. Chem. Soc. 129, 6269–6277 (2007)

    Article  CAS  Google Scholar 

  20. Bald, I., Kopyra, J., Illenberger, E.: Selective excision of C5 from D-ribose in the gas phase by low-energy electrons (0–1 eV): implications for the mechanism of DNA damage. Angew. Chem., Int. Ed. 45, 4851–4855 (2006)

    Article  CAS  Google Scholar 

  21. Denifl, S., Zappa, F., Mähr, I., Lecointre, J., Probst, M., Märk, T.D., Scheier, P.: Mass spectrometric investigation of anions formed upon free electron attachment to nucleobase molecules and clusters embedded in superfluid helium droplets. Phys. Rev. Lett. 97, 04320-1–04320-4 (2006)

    Article  Google Scholar 

  22. Papp, P., Urban, J., Matejcik, S., Stano, M., Ingólfsson, O.: Dissociative electron attachment to gas phase valine: a combined experimental and theoretical study. J. Chem. Phys. 125, 204301-1–204301-8 (2006)

    Article  Google Scholar 

  23. Flosadottir, H.D., Denifl, S., Zappa, F., Wendt, N., Mauracher, A., Bacher, A., Jonsson, H., Märk, T.D., Scheier, P., Ingólfsson, O.: Combined experimental and theoretical study on the nature and the metastable decay pathways of the amino acid ion fragment [M–H]. Angew. Chem. Int. Ed. 46, 8057–8059 (2007)

    Article  CAS  Google Scholar 

  24. Vasil'ev, Y.V., Figard, B.J., Voinov, V.G., Barofsky, D.F., Deinzer, M.L.: Resonant electron capture by some amino acids and their methyl esters. J. Am. Chem. Soc. 128, 5506–5515 (2006)

    Article  Google Scholar 

  25. Vizcaino, V., Puschnigg, B., Huber, S.E., Probst, M., Fabrikant, I.I., Gallup, G.A., Illenberger, E., Scheier, P., Denifl, S.: Hydrogen loss in aminobutanoic acid isomers by the sigma* resonance formed in electron capture. New J. Phys. 14, 043017-1–043017-12 (2012)

    Article  Google Scholar 

  26. Gschliesser, D., Vizcaino, V., Probst, M., Scheier, P., Denifl, S.: Formation and decay of the dehydrogenated parent anion upon electron attachment to dialanine. Chem. Eur. J. 18/15, 4613–4619 (2012)

    Article  Google Scholar 

  27. Yandell, M.A., King, S.B., Neumark, D.M.: Time-resolved radiation chemistry: photoelectron imaging of transient negative ions of nucleobases. J. Am. Chem. Soc. 135, 2128–2131 (2013)

    Article  CAS  Google Scholar 

  28. Denifl, S., Ptasinska, S., Probst, M., Hrusak, J., Scheier, P., Märk, T.D.: Electron attachment to the gas-phase DNA bases cytosine and thymine. J. Phys. Chem. A. 108, 6562–6569 (2004)

    Article  CAS  Google Scholar 

  29. Li, X., Sanche, L., Sevilla, M.D.: Low energy electron interactions with uracil: the energetics predicted by theory. J. Phys. Chem. B. 108, 5472–5476 (2004)

    Article  CAS  Google Scholar 

  30. Takayanagi, T., Asakura, T., Motegi, H.: Theoretical study on the mechanism of low-energy dissociative electron attachment for uracil. J. Phys. Chem. A. 113, 4795–4801 (2009)

    Article  CAS  Google Scholar 

  31. González-Ramírez, I., Segarra-Martí, J., Serrano-Andrés, L., Merchán, M., Rubio, M., Roca-Sanjuán, D.: On the N-1-H and N-3-H bond dissociation in uracil by low energy electrons: a CASSCF/CASPT2 study. J. Chem. Theory Comput. 8, 2769–2776 (2012)

    Article  Google Scholar 

  32. Burrow, P., Gallup, G., Scheer, A., Denifl, S., Ptasinska, S., Märk, T.D., Scheier, P.: Vibrational Feshbach resonances in uracil and thymine. J. Chem. Phys. 124, 124310-1–124310-7 (2006)

    Article  Google Scholar 

  33. Winstead, C., McKoy, V.: Low-energy electron collisions with gas-phase uracil. J. Chem. Phys. 125, 174304-1–174304-8 (2006)

    Google Scholar 

  34. Winstead, C., McKoy, V.: Ring-breaking electron attachment to uracil: following bond dissociations via evolving resonances. J. Chem. Phys. 129, 077101-1–077101-2 (2008); J. Chem. Phys. 128, 174302 (2008)

    Google Scholar 

  35. Gianturco, F. A.; Sebastianelli, F.; Lucchese, R. R.; Baccarelli, I.; Sanna, N.: Ring-breaking electron attachment to uracil: Following bond dissociations via evolving resonances. J. Chem. Phys. 128, 174302-1-174302-8 (2008); Erratum: “Ring-breaking electron attachment to uracil: Following bond dissociations via evolving resonances”. J. Chem. Phys. 131, 249901-1-249901-2 (2008)

    Google Scholar 

  36. Dora, A., Bryjko, L., van Mourik, T., Tennyson, J.: R-matrix study of elastic and inelastic electron collisions with cytosine and thymine. J. Phys. B. 45, 175203-1–175203-10 (2012)

    Article  Google Scholar 

  37. Dora, A., Tennyson, J., Bryjko, L., van Mourik, T.: R-matrix calculation of low-energy electron collisions with uracil. J. Chem. Phys. 130, 164307-1–164307-8 (2009)

    Article  Google Scholar 

  38. Aflatooni, K., Scheer, A.M., Burrow, P.D.: Total dissociative electron attachment cross sections for molecular constituents of DNA. J. Chem. Phys. 125, 054301-1–054301-5 (2006)

    Article  Google Scholar 

  39. Davis, D., Vysotskiy, V.P., Sajeev, Y., Cederbaum, L.S.: A one-step four-bond-breaking reaction catalyzed by an electron. Angew. Chem. Int. Ed. 51, 8003–8007 (2012)

    Article  CAS  Google Scholar 

  40. Asfandiarov, N.L., Pshenichnyuk, S.A., Lukin, V.G., Pshenichnyuk, I.A., Modelli, A., Matejcik, S.: Temporary anion states and dissociative electron attachment to nitrobenzene derivatives. Int. J. Mass Spectrom. 264, 22–37 (2007)

    Article  CAS  Google Scholar 

  41. Mauracher, A., Denifl, S., Edtbauer, A., Hager, M., Probst, M., Echt, O., Märk, T.D., Scheier, P., Field, T.A., Graupner, K.: Metastable anions of dinitrobenzene: resonances for electron attachment and kinetic energy release. J. Chem. Phys. 133, 244302-1–244302-9 (2010)

    Article  Google Scholar 

  42. Shchukin, P.V., Muftakhov, M.V., Pogulay, A.V.: Study of fragmentation pathways of metastable negative ions in aliphatic dipeptides using the statistical theory. Rapid Commun. Mass Spectrom. 26, 828–834 (2012)

    Article  CAS  Google Scholar 

  43. Zappa, F., Beikircher, M., Mauracher, A., Denifl, S., Probst, M., Injan, N., Limtrakul, J., Bacher, A., Echt, O., Märk, T.D., Scheier, P., Field, T.A., Graupner, K.: Metastable dissociation of anions formed by electron attachment. Chem. Phys. Chem. 9, 607–611 (2008)

    Article  CAS  Google Scholar 

  44. Flosadóttir, H.D., Ómarsson, B., Bald, I., Ingolfsson, O.: Metastable decay of DNA components and their compositions—a perspective on the role of reactive electron scattering in radiation damage. Eur. Phys. J. D 66, 13–32 (2012)

    Article  Google Scholar 

  45. Flosadóttir, H.D., Jónsson, H., Sigurdsson, S.T., Ingólfsson, O.: Experimental and theoretical study of the metastable decay of negatively charged nucleosides in the gas phase. Phys. Chem. Chem. Phys. 13, 15283–15290 (2011)

    Article  Google Scholar 

  46. Bald, I., Flosadóttir, H.D., Ómarsson, B., Ingólfsson, O.: Metastable fragmentation of a thymidine-nucleotide and its components. Int. J. Mass Spectrom. 313, 15–20 (2012)

    Article  CAS  Google Scholar 

  47. Bald, I., Flosadóttir, H.D., Kopyra, J., Illenberger, E., Ingólfsson, O.: Fragmentation of deprotonated D-ribose and D-fructose in MALDI-Comparison with dissociative electron attachment. Int. J. Mass. Spectrom. 280, 190–197 (2009)

    Article  CAS  Google Scholar 

  48. Flosadóttir, H.D., Bald, I., Ingólfsson, O.: Fast and metastable fragmentation of deprotonated D-fructose—a combined experimental and computational study. Int. J. Mass. Spectrom. 305, 50–57 (2011)

    Article  Google Scholar 

  49. Almeida, D., Ferreira da Silva, F., García, G., Limão-Vieira, P.: Selective bond cleavage in potassium collisions with pyrimidine bases of DNA. Phys. Rev. Lett. 110, 023201-1–023201-5 (2013)

    Article  Google Scholar 

  50. Almeida, D., Antunes, R., Martins, G., Eden, S., Ferreira da Silva, F., Nunes, Y., Garcia, G., Limão-Vieira, P.: Electron transfer-induced fragmentation of thymine and uracil in atom-molecule collisions. Phys. Chem. Chem. Phys. 13, 15657–15665 (2011)

    Article  CAS  Google Scholar 

  51. Hanel, G., Gstir, B., Denifl, S., Scheier, P., Probst, M., Farizon, B., Farizon, M., Illenberger, I., Märk, T.D.: Electron attachment to uracil: Effective destruction at subexcitation energies. Phys. Rev. Lett. 90, 188104-1–188104-4 (2003)

    Article  Google Scholar 

  52. Scheer, A.M., Silvernail, C., Belot, J.A., Aflatooni, K., Gallup, G.A., Burrow, P.D.: Dissociative electron attachment to uracil deuterated at the N-1 and N-3 positions. Chem. Phys. Lett. 411, 46–50 (2005)

    Article  CAS  Google Scholar 

  53. Antunes, R., Almeida, D., Martins, G., Mason, N.J., Garcia, G., Maneira, M.J.P., Nunes, Y., Limão-Vieira, P.: Negative ion formation in potassium-nitromethane collisions. Phys. Chem. Chem. Phys. 12, 12513–12519 (2010)

    Article  CAS  Google Scholar 

  54. Stano, M., Flosadottir, H.D., Ingolfsson, O.: Effective quenching of fragment formation in negative ion oligonucleotide matrix-assisted laser desorption/ionization mass spectrometry through sodium adduct formation. Rapid Commun. Mass Spectrom. 20, 3498–3502 (2006)

    Article  CAS  Google Scholar 

  55. Breeger, S., von Meltzer, M., Hennecke, U., Carell, T.: Investigation of the pathways of excess electron transfer in DNA with flavin-donor and oxetane-acceptor modified DNA hairpins. Chem. Eur. J. 12, 6469–6477 (2006)

    Article  CAS  Google Scholar 

  56. Grimme, S.: Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108-1–034108-16 (2006)

    Article  Google Scholar 

  57. Zheng, J., Xu, X., Truhlar, D.G.: Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 128, 295–305 (2011)

    Article  CAS  Google Scholar 

  58. Becke, A.D.: Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (7), 5648–5652 (1993)

    Google Scholar 

  59. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Article  CAS  Google Scholar 

  60. Jónsson, H.: Simulation of surface processes. Proc. Natl. Acad. Sci. U. S. A. 108, 944–949 (2011)

    Article  Google Scholar 

  61. Gallup, G.A., Fabrikant, I.I.: Vibrational Feshbach resonances in dissociative electron attachment to uracil. Phys. Rev. A 83, 012706-1–012706-7 (2011)

    Article  Google Scholar 

  62. Greisch, F., Gabelica, V., Remacle, F., De Pauw, E.: Thermometer ions for matrix-enhanced laser desorption/ionization internal energy calibration. Rapid Commun. Mass Spectrom. 17, 1847–1854 (2003)

    Article  CAS  Google Scholar 

  63. Luo, G., Marginean, I., Vertes, A.: Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal. Chem. 74, 6185–6190 (2002)

    Article  CAS  Google Scholar 

  64. Almeida, D., Kinzel, D., Ferreira da Silva, F., Puschnigg, B., Gschliesser, D., Scheier, P., Denifl, S., García, G., González, L., Limão-Vieira, P.: N-site demethylation in pyrimidine bases as studied by low energy electrons and ab initio calculations. Phys. Chem. Chem. Phys. 15, 11431–11440 (2013)

    Google Scholar 

  65. Denifl, S., Zappa, F., Mauracher, A., Ferreirada Silva, F., Bacher, A., Echt, O., Märk, T.D., Böhme, D.K., Scheier, P.: Dissociative electron attachment to DNA bases near absolute zero temperature: freezing dissociation intermediates. Chem. Phys. Chem. 9, 1387–1389 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work from the FWF, Wien (P-22665) and the European Commission, Brussels. F.F.S. and D.A. acknowledge the Portuguese Foundation for Science and Technology (FCT-MEC) for post-doctoral and post-graduate scholarships SFRH/BPD/68979/2010 and SFRH/BD/61645/2009, respectively. D.A. together with P.L.-V. acknowledge the PEst-OE/FIS/UI0068/2011 and PTDC/FIS-ATO/1832/2012 grants. O.I. acknowledges support from the Icelandic Centre for Research (RANNIS) and the Research Fund of the University of Iceland, and H.D.F. acknowledges a Ph.D. grant from the Eimskip University Fund. G.G. acknowledges support from the Spanish Ministerio de Economia y Productividad (Project FIS2009-10245). This work also forms a part of the EU/ESF COST Actions Electron Controlled Chemical Lithography (ECCL) CM0601, The Chemical Cosmos CM0805, and the Nanoscale Insights into Ion Beam Cancer Therapy (Nano-IBCT) MP1002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paulo Limão-Vieira or Stephan Denifl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3.22 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, F.F., Matias, C., Almeida, D. et al. NCO, a Key Fragment Upon Dissociative Electron Attachment and Electron Transfer to Pyrimidine Bases: Site Selectivity for a Slow Decay Process. J. Am. Soc. Mass Spectrom. 24, 1787–1797 (2013). https://doi.org/10.1007/s13361-013-0715-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0715-9

Key words

Navigation