Skip to main content

Advertisement

Log in

Fragmentation of Neutral Amino Acids and Small Peptides by Intense, Femtosecond Laser Pulses

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brodbelt, J.S.: Shedding light on the frontier of photodissociation. J. Am. Soc. Mass Spectrom. 22, 197–206 (2011)

    Article  CAS  Google Scholar 

  2. Kelly, O., Duffy, M.J., King, R.B., Belshaw, L., Williams, I.D., Sa, J., Calvert, C.R., Greenwood, J.B.: Femtosecond lasers for mass spectrometry: proposed application to catalytic hydrogenation of butadiene. Analyst 137, 64–69 (2012)

    Article  CAS  Google Scholar 

  3. Peng, J., Puskas, N., Corkum, P.B., Rayner, D.M., Loboda, A.V.: High-pressure gas phase femtosecond laser ionization mass spectrometry. Anal. Chem. 84, 5633–5640 (2012)

    Article  CAS  Google Scholar 

  4. Chang, Y.-C., Imasaka, T.: Simple pretreatment procedure combined with gas chromatography/multiphoton ionization/mass spectrometry for the analysis of dioxins in soil samples obtained after the Tohoku earthquake. Anal. Chem. 85, 349–354 (2013)

    Google Scholar 

  5. Watanabe-Ezoe, Y., Li, X., Imasaka, T., Uchimura, T., Imasaka, T.: Gas chromatography/femtosecond multiphoton ionization/time-of-flight mass spectrometry of dioxins. Anal. Chem. 82, 6519–6525 (2010)

    Article  CAS  Google Scholar 

  6. Sleno, L., Volmer, D.A.: Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39, 1091–1112 (2004)

    Article  CAS  Google Scholar 

  7. Kalcic, C.L., Gunaratne, T., Jones, A.D., Dantus, M., Reid, G.E.: Femtosecond laser-induced ionization/ dissociation of protonated peptides. J. Am. Chem. Soc. 131, 940–942 (2009)

    Article  CAS  Google Scholar 

  8. Zhu, X., Kalcic, C.L., Winkler, N., Lozovoy, V.V., Dantus, M.: Applications of femtochemistry to proteomic and metabolomic analysis. J. Phys. Chem. A 114, 10380–10387 (2010)

    Article  CAS  Google Scholar 

  9. Brixner, T., Gerber, G.: Quantum control of gas-phase and liquid-phase femtochemistry. ChemPhysChem 4, 418–443 (2003)

    Article  CAS  Google Scholar 

  10. Lozovoy, V.V., Zhu, X., Gunaratne, T.C., Harris, D.A., Dantus, M.: Control of molecular fragmentation using shaped femtosecond pulses. J. Phys. Chem. A 112, 3789–3812 (2008)

    Article  CAS  Google Scholar 

  11. Laarmann, T., Shchatsinin, I., Singh, P., Zhavoronkov, N., Schulz, C.P., Hertel, I.V.: Femtosecond pulse shaping as analytic tool in mass spectrometry of complex polyatomic systems. J. Phys. B At. Mol. Opt. Phys. 41, 074005 (2008)

    Article  Google Scholar 

  12. Zhang, X.S., Schneider, E., Taft, G., Kapteyn, H., Murnane, M., Backus, S.: Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system. Opt. Express 20, 7015–7021 (2012)

    Article  CAS  Google Scholar 

  13. Lezius, M., Blanchet, V., Ivanov, M.Y., Stolow, A.: Polyatomic molecules in strong laser fields: nonadiabatic multielectron dynamics. J. Chem. Phys. 117, 1575–1588 (2002)

    Article  CAS  Google Scholar 

  14. Markevitch, A.N., Romanov, D.A., Smith, S.M., Schlegel, H.B., Ivanov, M.Y., Levis, R.J.: Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields. Phys. Rev. A 69, 013401 (2004)

    Article  Google Scholar 

  15. Dundas, D.: Multielectron effects in high harmonic generation in N2 and benzene: simulation using a non-adiabatic quantum molecular dynamics approach for laser-molecule interactions. J. Chem. Phys. 136, 194303 (2012)

    Google Scholar 

  16. Kalcic, C.L., Reid, G.E., Lozovoy, V.V., Dantus, M.: Mechanism elucidation for nonstochastic femtosecond laser-induced ionization/dissociation: from amino acids to peptides. J. Phys. Chem. A 116, 2764–2774 (2012)

    Article  CAS  Google Scholar 

  17. Smith, S.A., Kalcic, C.L., Safran, K.A., Stemmer, P.M., Dantus, M., Reid, G.E.: Enhanced characterization of singly protonated phosphopeptide ions by femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fs-LID-MS/MS). J. Am. Soc. Mass Spectrom. 21, 2031–2040 (2010)

    Article  CAS  Google Scholar 

  18. Weinkauf, R., Aicher, P., Wesley, G., Grotemeyer, J., Schlag, E.W.: Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules. J. Phys. Chem. 98, 8381–8391 (1994)

    Article  CAS  Google Scholar 

  19. Weinkauf, R., Schanen, P., Yang, D., Soukoura, S., Schlag, E.W.: Elementary processes in peptides: electron mobility and dissociation in peptide cations in the gas phase. J. Phys. Chem. 99, 11255–11265 (1995)

    Article  CAS  Google Scholar 

  20. Weinkauf, R., Schanen, P., Metsala, A., Schlag, E.W., Bürgle, M., Kessler, H.: Highly efficient charge transfer in peptide cations in the gas phase: threshold effects and mechanism. J. Phys. Chem. 100, 18567–18585 (1996)

    Article  CAS  Google Scholar 

  21. Vorsa, V., Kono, T., Willey, K.F., Winograd, N.: Femtosecond photoionization of ion beam desorbed aliphatic and aromatic amino acids: fragmentation via α-cleavage reactions. J. Phys. Chem. B 103, 7889–7895 (1999)

    Article  CAS  Google Scholar 

  22. Cui, W., Hu, Y., Lifshitz, C.: Time resolved photodissociation of small peptide ions. Eur. Phys. J. D 20, 565–571 (2002)

    Article  CAS  Google Scholar 

  23. Tembreull, R., Lubman, D.M.: Resonant two-photon ionization of small peptides using pulsed laser desorption in supersonic beam mass spectrometry. Anal. Chem. 59, 1003–1006 (1987)

    Article  CAS  Google Scholar 

  24. Lockyer, N., Vickerman, J.C.: Multiphoton ionization mass spectrometry of small biomolecules with nanosecond and femtosecond laser pulses. Int. J. Mass Spectrom. 176, 77–86 (1998)

    Article  CAS  Google Scholar 

  25. Lockyer, N., Vickerman, J.C.: Single photon and femtosecond multiphoton ionization of the dipeptide valyl-valine. Int. J. Mass Spectrom. 197, 197–209 (2000)

    Article  CAS  Google Scholar 

  26. Willingham, D., Kucher, A., Winograd, N.: Strong-field ionization of sputtered molecules for biomolecular imaging. Chem. Phys. Lett. 468, 264–269 (2009)

    Article  CAS  Google Scholar 

  27. Grégoire, G., Dedonder-Lardeux, C., Jouvet, C., Desfrancois, C., Fayeton, J.A.: Ultrafast excited state dynamics in protonated GWG and GYG tripeptides. Phys. Chem. Chem. Phys. 9, 78–82 (2007)

    Article  Google Scholar 

  28. Pérot, M., Lucas, B., Barat, M., Fayeton, J.A., Jouvet, C.: Mechanisms of UV photodissociation of small protonated peptides. J. Phys. Chem. A 114, 3147–3156 (2010)

    Article  Google Scholar 

  29. Kelly, O., Calvert, C.R., Greenwood, J.B., Zettergren, H., Nielsen, S.B., Wyer, J.A.: Effects of charge location on the absorptions and lifetimes of protonated tyrosine peptides in vacuo. J. Phys. Chem. A 116, 1701–1709 (2012)

    Article  CAS  Google Scholar 

  30. Posthumus, J.H.: The dynamics of small molecules in intense laser fields. Rep. Prog. Phys. 67, 623–665 (2004)

    Article  CAS  Google Scholar 

  31. Calvert, C.R., Bryan, W.A., Newell, W.R., Williams, I.D.: Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules. Phys. Rep. 491, 1–28 (2010)

    Article  CAS  Google Scholar 

  32. Keldysh, L.V.: Ionization in the field of a strong electromagnetic wave. Sov. Phys. - JETP 20, 1307–1314 (1965)

    Google Scholar 

  33. DeWitt, M.J., Levis, R.J.: Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields. Phys. Rev. Lett. 81, 5101–5104 (1998)

    Article  CAS  Google Scholar 

  34. DeWitt, M.J., Levis, R.J.: Calculating the Keldysh adiabaticity parameter for atomic, diatomic, and polyatomic molecules. J. Chem. Phys. 108, 7739–7742 (1998)

    Article  CAS  Google Scholar 

  35. Hankin, S.M., Villeneuve, D.M., Corkum, P.B., Rayner, D.M.: Nonlinear ionization of organic molecules in high intensity laser fields. Phys. Rev. Lett. 84, 5082–5085 (2000)

    Article  CAS  Google Scholar 

  36. Muth-Böhm, J., Becker, A., Faisal, F.H.M.: Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields. Phys. Rev. Lett. 85, 2280–2283 (2000)

    Article  Google Scholar 

  37. Boguslavskiy, A.E., Mikosch, J., Gijsbertsen, A., Spanner, M., Patchkovskii, S., Gador, N., Vrakking, M.J.J., Stolow, A.: The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 335, 1336–1340 (2012)

    Article  CAS  Google Scholar 

  38. Savitski, M.M., Nielsen, M.L., Zubarev, R.A.: Side-chain losses in electron capture dissociation to improve peptide identification. Anal. Chem. 79, 2296–2302 (2007)

    Article  CAS  Google Scholar 

  39. van Grondelle, R., Novoderezhkin, V.I.: Quantum effects in photosynthesis. Procedia Chem. 3, 198–210 (2011)

    Article  Google Scholar 

  40. Cordes, M., Giese, B.: Electron transfer in peptides and proteins. Chem. Soc. Rev. 38, 892–901 (2009)

    Article  CAS  Google Scholar 

  41. Becker, D., Adhikary, A., Sevilla, M.D.: The Role of Charge and Spin Migration in DNA Radiation Damage. In: Chakraborty, T. (ed.) Charge Migration in DNA, pp. 139–175. New York, Springer (2007)

    Chapter  Google Scholar 

  42. González-Magana, O., Reitsma, G., Bari, S., Hoekstra, R., Schlatöhlter, T.: Length effects in VUV photofragmentation of protonated peptides. Phys. Chem. Chem. Phys. 14, 4351–4354 (2012)

    Article  Google Scholar 

  43. Lehr, L., Horneff, T., Weinkauf, R., Schlag, E.W.: Femtosecond dynamics after ionization: 2-phenylethyl-N,N-dimethylamine as a model system for non-resonant downhill charge transfer in peptides. J. Phys. Chem. A 109, 8074–8080 (2005)

    Article  CAS  Google Scholar 

  44. Belshaw, L., Calegari, F., Duffy, M.J., Trabattoni, A., Poletto, L., Nisoli, M., Greenwood, J.B.: Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3, 3751–3754 (2012)

    Article  CAS  Google Scholar 

  45. Cederbaum, L.S., Zobeley, J.: Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999)

    Article  CAS  Google Scholar 

  46. Remacle, F., Levine, R.D.: An electronic time scale in chemistry. Proc. Natl. Acad. Sci. U. S. A. 103, 6793–6798 (2006)

    Article  CAS  Google Scholar 

  47. Kuleff, A.I., Lünnemann, S., Cederbaum, L.S.: Electron-correlation-driven charge migration in oligopeptides. Chem. Phys. 414, 100–105 (2013)

    Google Scholar 

  48. Roepstorff, P., Fohlman, J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984)

    Article  CAS  Google Scholar 

  49. Greenwood, J.B., Kelly, O., Calvert, C.R., Duffy, M.J., King, R.B., Belshaw, L., Graham, L., Alexander, J.D., Williams, I.D., Bryan, W.A., Turcu, I.C.E., Cacho, C.M., Springate, E.: A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps. Rev. Sci. Instrum. 82, 043103 (2011)

    Article  CAS  Google Scholar 

  50. Calvert, C.R., Belshaw, L., Duffy, M.J., Kelly, O., King, R.B., Smyth, A.G., Kelly, T.J., Costello, J.T., Timson, D.J., Bryan, W.A., Kierspel, T., Rice, P., Turcu, I.C.E., Cacho, C.M., Springate, E., Williams, I.D., Greenwood, J.B.: LIAD-fs Scheme for studies of ultrafast laser interactions with gas phase biomolecules. Phys. Chem. Chem. Phys. 14, 6289–6297 (2012)

    Google Scholar 

  51. Turcu, I.C.E., Springate, E., Froud, C.A., Cacho, C.M., Collier, J.L., Bryan, W.A., Nemeth, G.R.A.J., Marangos, J.P., Tisch, J.W.G., Torres, R., Siegel, T., Brugnera, L., Underwood, J.G., Procino, I., Newell, W.R., Altucci, C., Velotta, R., King, R.B., Alexander, J.D., Calvert, C.R., Kelly, O., Greenwood, J.B., Williams, I.D., Cavalleri, A., Petersen, J.C., Dean, N., Dhesi, S.S., Poletto, L., Villoresi, P., Frassetto, F., Bonora, S., Roper, M.D.: Ultrafast science and development at the Artemis facility. Proc. SPIE Int. Soc. Opt. Eng. 7469, 746902 (2009)

  52. Schlag, E.W., Sheu, S.-Y., Yang, D.-H., Selzle, H.L., Lin, S.H.: Distal charge transport in peptides Angew. Chem. Int. Ed. 46, 3196–3210 (2007)

    Google Scholar 

  53. Stein, S.E.: “Mass Spectra”. In: Linstrom, P.J., Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899. Available at: http://webbook.nist.gov. Accessed: April 15, 2013

  54. Wilson, K.R., Belau, L., Nicolas, C., Jimenez-Cruz, M., Leone, S.R., Ahmed, M.: Direct determination of the ionization energy of histidine with VUV synchrotron radiation. Int. J. Mass Spectrom. 249/250, 155–161 (2006)

    Article  CAS  Google Scholar 

  55. Jochims, H.-W., Schwell, M., Chotin, J.-L., Clemino, M., Dulieu, F., Baumgärtel, H., Leach, S.: Photo-ion mass spectrometry of five amino acids in the 6–22 eV photon energy range. Chem. Phys. 298, 279–297 (2004)

    Article  CAS  Google Scholar 

  56. Plekan, O., Feyer, V., Richter, R., Coreno, M., Prince, K.C.: Valence photoionization and photofragmentation of aromatic amino acids. Mol. Phys. 106, 1143–1153 (2008)

    Article  CAS  Google Scholar 

  57. Peptide Fragmentation Modeller, Biological MS Data and Software Distribution Center, Pacific Northwest National Laboratory

  58. Schlag, E.W., Selzle, H.L., Schanen, P., Weinkauf, R., Levine, R.D.: Dissociation kinetics of peptide ions. J. Phys. Chem. A 110, 8497–8500 (2006)

    Article  CAS  Google Scholar 

  59. Horsch, P., Urbasch, G., Weitzel, K.-M.: Analysis of chirality by femtosecond laser ionization mass spectrometry. Chirality 24, 684–690 (2012)

    Article  CAS  Google Scholar 

  60. Lux, C., Wollenhaupt, M., Bolze, T., Liang, Q., Köhler, J., Sarpe, C., Baumert, T.: Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 51, 5001–5005 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work by the Leverhulme Trust, STFC through access to the Artemis Laser Facility, and EPSRC through the STFC Laser Loan Pool. C.R.C. acknowledges support from EPSRC through the Postdoctoral Fellowship Programme (grant number EP/H027319/1). L.B. and M.J.D. acknowledge the support of the Department of Employment and Learning, Northern Ireland. T.J.K. and J.T.C. acknowledge support from Science Foundation Ireland. The authors also acknowledge the technical assistance provided by Phil Rice at the Artemis Laser Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason B. Greenwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duffy, M.J., Kelly, O., Calvert, C.R. et al. Fragmentation of Neutral Amino Acids and Small Peptides by Intense, Femtosecond Laser Pulses. J. Am. Soc. Mass Spectrom. 24, 1366–1375 (2013). https://doi.org/10.1007/s13361-013-0653-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0653-6

Key words

Navigation