Journal of Applied Genetics

, Volume 53, Issue 1, pp 61–82

Genetic determinants of aggression and impulsivity in humans

  • Konstantin A. Pavlov
  • Dimitry A. Chistiakov
  • Vladimir P. Chekhonin
Human Genetics • Review

DOI: 10.1007/s13353-011-0069-6

Cite this article as:
Pavlov, K.A., Chistiakov, D.A. & Chekhonin, V.P. J Appl Genetics (2012) 53: 61. doi:10.1007/s13353-011-0069-6

Abstract

Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.

Keywords

Aggression Association Dopamine Impulsivity Polymorphism Serotonin 

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2011

Authors and Affiliations

  • Konstantin A. Pavlov
    • 2
  • Dimitry A. Chistiakov
    • 1
  • Vladimir P. Chekhonin
    • 1
    • 2
  1. 1.Department of Medicinal NanobiotechnologyPirogov Russian State Medical UniversityMoscowRussia
  2. 2.Department of Fundamental and Applied NeurobiologySerbsky State Research Center of Forensic and Social PsychiatryMoscowRussia