Skip to main content
Log in

Recent advances in wireless smart sensors for multi-scale monitoring and control of civil infrastructure

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

While much of the technology associated with wireless smart sensors (WSS) has been available for over a decade, only a limited number of full-scale implementations have been realized for civil infrastructure, primarily due to the lack of critical hardware and software elements. Using the Imote2, a flexible WSS framework has been developed for full-scale, autonomous structural health monitoring (SHM) that integrates the necessary software and hardware elements, while addressing key implementation requirements for civil infrastructure. This paper discusses the recent advances in the development of this WSS framework and extensions to structural control. Their successful implementations at full-scale for SHM of the 2nd Jindo Bridge in South Korea and the Government Bridge at the Rock Island Arsenal in Illinois, USA, as well as for wireless control of a lab-scale structure are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. A courier new font indicates the name of a service in the Illinois SHM Services Toolsuite.

  2. A consolas font indicates the name of an application in the Illinois SHM Services Toolsuite.

References

  1. Brincker R, Zhang L, Anderson P (2001) Modal identification of output-only systems using frequency domain decomposition. Smart Mater Struct 10(3):441–445

    Article  Google Scholar 

  2. Candy JC, Temes GC (1992) Oversampling methods for A/D and D/A conversion. Oversampling delta-sigma data converters, pp 1–25

  3. Çelebi M (2006) Real-time seismic monitoring of the New Cape Girardeau bridge and preliminary analyses of recorded data: an overview. Earthq Spectra 22:609–630

    Article  Google Scholar 

  4. Cho S, Lynch JP, Lee J-J, Yun C-B (2010) Development of an automated wireless tension force estimation system for cable-stayed bridge. J Intell Mater Syst Struct 21(3):361–376

    Article  Google Scholar 

  5. Cho S, Jang S, Jo H, Park J, Jung H-J, Yun C-B, Spencer BF Jr, Seo J (2010) Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses. Smart Struct Syst 6(5–6):461–480

    Article  Google Scholar 

  6. Cho S, Giles RK, Spencer BF Jr (2014) System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction. Struct Control Health Monit 22(2):255–272

    Article  Google Scholar 

  7. Cole HA (1968) On-the-analysis of random vibrations. Paper No. 68–288. American Institute of Aeronautics and Astronautics

  8. De Couto DS, Aguayo D, Bicket J, Morris R (2005) A high-throughput path metric for multi-hop wireless routing. Wirel Netw 11(4):419–434

    Article  Google Scholar 

  9. Frailey FW (2011) The Iowa Interstate Story. Trains Magazine, June, pp 30-37

  10. Giles RK, Kim R, Spencer BF Jr, Bergman LA, Shield CK, Sweeney SC (2011) Structural Health Indices for Steel Truss Bridges. In: Proceedings of the International Modal Analysis Conference (IMAC XXIX), Jacksonville, FL

  11. Giles RK (2014) Development of a Long-term, Multimetric Structural Health Monitoring System for a Historic Steel Truss Swing Bridge. Ph.D. Dissertation, University of Illinois at Urbana-Champaign

  12. Gnawali O, Fonseca R, Jamieson K, Moss D, Levis P (2009) Collection tree protocol. In: Sensys 2009: the 7th ACM conference on embedded networked sensor systems, pp 1-14

  13. Gobriel S, Mosse D, Cleric R (2009) TDMA-ASAP: Sensor Network TDMA Scheduling with Adaptive Slot-Stealing and Parallelism. In: Proceedings of the 29th International Conference on Distributed Computing Systems (ICDCS’09). IEEE, Montreal, QC, pp 458–465

  14. IEEE Std 802-1990 (1990) IEEE Standards for Local and Metropolitan Networks: Overview and Architecture, New York

  15. James GH, Carne TG, Lauffer JP (1993) The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines. Sandia Report, SAND92-1666, Sandia National Laboratories, Albuquerque, NM

  16. Jang S, Jo H, Cho S, Mechitov KA, Rice JA, Sim SH, Jung H-J, Yun C-B, Spencer BF Jr, Agha G (2010a) Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation. Smart Struct Syst 6(5–6):439–459

    Article  Google Scholar 

  17. Jang S, Sim S-H, Jo H, Spencer BF Jr (2010b) Decentralized bridge health monitoring using wireless smart sensors. In: Proceedings of the SPIE Smart Structures/NDE Conference, vol 7647, p 76473I

  18. Jo H, Sim S-H, Mechitov KA, Kim R, Li J, Moinzadeh P, Spencer BF Jr, Park JW, Cho S, Jung H-J, Yun C-B, Rice JA, Nagayama T (2011) Hybrid Wireless Smart Sensor Network for Full-scale Structural Health Monitoring of a Cable-stayed Bridge. In: Proceedings of the SPIE Smart Structures/NDE Conference

  19. Jo H, Sim SH, Nagayama T, Spencer BF Jr (2012) Development and application of high-sensitivity wireless smart sensors for decentralized stochastic modal identification. J Eng Mech ASCE 138(6):683–694

    Article  Google Scholar 

  20. Jo H, Park JW, Spencer BF Jr, Jung HJ (2013) Development of high-sensitivity wireless strain sensor for structural health monitoring. Smart Struct Syst 11(5):477–496

    Article  Google Scholar 

  21. Kiryushin A, Sadkov A, Mainwaring A (2008) Real-World Performance of Clear Channel Assessment in 802.15.4 Wireless Sensor Networks. In: Proceedings of the Second International Conference on Sensor Technologies and Applications, pp 625–630

  22. Levis P, Madden S, Polastre J, Szewczyk R, Woo A, Gay D, Hill J, Welsh M, Brewer E, Culler D (2005) TinyOS: an operating system for sensor networks. Ambient intelligence. Springer, Berlin, pp 115–147

    Google Scholar 

  23. Li J, Mechitov KA, Spencer BF Jr (2014a) Long-term and Short-term Autonomous Structural Health Monitoring Strategies using Wireless Smart Sensor Networks. In: Proceedings of the Sixth World Conference on Structural Control and Monitoring (6WCSCM), Barcelona, Spain

  24. Li J, Mechitov KA, Kim R, Spencer BF Jr (2014b) Improved Synchronized Sensing for Structural Health Monitoring using Wireless Smart Sensor Networks. In: Proceedings of the Sixth World Conference on Structural Control and Monitoring (6WCSCM), Barcelona, Spain

  25. Linderman LE, Mechitov KA, Spencer BF Jr (2011) Real-time wireless data acquisition for structural health monitoring and control. NSEL Report No. 029, University of Illinois at Urbana-Champaign. Available at http://hdl.handle.net/2142/25420

  26. Linderman LE (2013) Smart Wireless Control of Civil Structures. PhD. Dissertation. University of Illinois at Urbana-Champaign

  27. Linderman LE, Jo H, Spencer BF Jr (2015) Low-latency data acquisition for wireless control applications. IEEE Sens J 15(3):1800–1809

    Google Scholar 

  28. Lynch JP, Loh KJ (2006) A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib Dig 38(2):28–91

    Article  Google Scholar 

  29. Miller TI, Spencer BF Jr, Li J, Jo H (2010) Solar energy harvesting and software enhancements for autonomous wireless smart sensor networks. NSEL Report No. 022, University of Illinois at Urbana-Champaign. Available at http://hdl.handle.net/2142/16300

  30. Moore M, Phares B, Graybeal B, Rolander D, Washer G (2001) Reliability of Visual Inspection for Highway Bridges, Technical Report #FHWA-RD-01-020, Federal Highway Administration, Washington DC

  31. Nagayama T, Sim S-H, Miyamori Y, Spencer BF Jr (2007) Issues in structural health monitoring employing smart sensors. Smart Struct Syst 3(3):299–320

    Article  Google Scholar 

  32. Nagayama T, Spencer BF Jr, Mechitov KA, Agha GA (2009) Middleware services for structural health monitoring using smart sensors. Smart Struct Syst 5(2):119–137

    Article  Google Scholar 

  33. Nagayama T, Moinzadeh P, Mechitov KA, Ushita M, Makihata N, Leiri M, Agha G, Spencer BF Jr, Fujino Y, Seo J (2010) Reliable Multi-hop Communication for Structural Health Monitoring. Smart Struct Syst 6(5–6):481–504

    Article  Google Scholar 

  34. Okada H, Ha Y-C (1992) Comparison of wind tunnel and full-scale pressure measurement tests on the Texas Tech Building. J Wind Eng Ind Aerodyn 43(1–3):1601–1612

    Article  Google Scholar 

  35. Park JW, Jung HJ, Jo H, Spencer BF Jr (2012) Feasibility study of micro wind turbines for powering wireless sensors in a cable-stayed bridge. Energies 5:3450–3464

    Article  Google Scholar 

  36. Pakzad SN, Fenves GL, Kim S, Culler DE (2008) Design and implementation of scalable wireless sensor network for structural monitoring. J Infrastruct Syst 14(1):89–101

    Article  Google Scholar 

  37. Perkins C, Belding-Royer E, Das S (2003) Ad hoc On-Demand Distance Vector (AODV) Routing. IETF. RFC 3561

  38. Rice JA, Spencer BF Jr (2009) Flexible Smart Sensor Framework for Autonomous Full-scale Structural Health Monitoring. NSEL Report Series, No. 18, University of Illinois at Urbana-Champaign. Available at http://hdl.handle.net/2142/13635

  39. Rice JA, Mechitov KA, Spencer BF Jr, Agha GA (2010) Autonomous smart sensor network for full-scale structural health monitoring. In: Proceedings of SPIE Smart Structures/NDE 2010, San Diego, CA

  40. Shimada T (1994) Estimating method of cable tension from natural frequency of high mode. Proc JSCE 501(1–29):163–171 (in Japanese)

    Google Scholar 

  41. Sim S-H, Spencer BF Jr (2009) Decentralized Strategies for Monitoring Structures using Wireless Smart Sensor Networks. NSEL Report Series, 019, University of Illinois at Urbana-Champaign. Available at http://www.ideals.illinois.edu/handle/2142/14280

  42. Sim S-H, Spencer BF Jr, Zhang M, Xie H (2010) Automated decentralized modal analysis using smart sensors. J Struct Control Health Monit 17(8):423–438. doi:10.1002/stc.348

    Article  Google Scholar 

  43. Sim S-H, Carbonell-Marquez JF, Spencer BF Jr, Jo H (2010) Decentralized random decrement technique for efficient data aggregation and system identification in wireless smart sensor networks. Probab Eng Mech 26(1):81–91

    Article  MATH  Google Scholar 

  44. Sim S-H, Li J, Jo H, Park JW, Cho S, Spencer BF Jr, Jung HJ (2014) A wireless smart sensor network for automated monitoring of cable tension. Smart Mater Struct 23(2):025006

    Article  Google Scholar 

  45. TinyOS (2006) http://www.tinyos.net

  46. U.S. Department of Transportation (2010) 2010 Status of the National Highways, Bridges, and Transit: Conditions and Performance. Report to Congress

  47. van Hoesel LFW, Havinga PJM (2004) A TDMA-based MAC protocol for WSNs. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys ‘04). ACM, New York, NY, USA

  48. Walt K (2005) ADC Architecture III: Sigma-Delta ADC Basics. Analog Devices. MT-022 Tutorial

  49. Wang Y, Swartz RA, Lynch JP, Law KH, Lu K-C, Loh C-H (2007) Decentralized civil structural control using real-time wireless sensing and embedded computing. Smart Struct Syst 3(3):321–340

    Article  Google Scholar 

  50. Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the United States. J Perform Constr Facil 17(3):144–150

    Article  Google Scholar 

  51. Zui H, Shinke T, Namita YH (1996) Practical formulas for estimation of cable tension by vibration method. J Struct Eng ASCE 122(6):651–656

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation (CMS 06-00433, CMMI 07-24172, CMS 09-28886, and CPS 10-35773), the Korea Research Foundation (NRF-2008-220-D00117), Smart Infrastructure Technology Center (SISTeC) at KAIST, and the US Army Corps of Engineers (MEC W9132T-ILL-006). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billie F. Spencer Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer, B.F., Jo, H., Mechitov, K.A. et al. Recent advances in wireless smart sensors for multi-scale monitoring and control of civil infrastructure. J Civil Struct Health Monit 6, 17–41 (2016). https://doi.org/10.1007/s13349-015-0111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-015-0111-1

Keywords

Navigation