Skip to main content
Log in

Isoflavones: estrogenic activity, biological effect and bioavailability

  • Review
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Isoflavones are phytoestrogens with potent estrogenic activity; genistein, daidzein and glycitein are the most active isoflavones found in soy beans. Phytoestrogens have similarity in structure with the human female hormone 17-β-estradiol, which can bind to both alpha and beta estrogen receptors, and mimic the action of estrogens on target organs, thereby exerting many health benefits when used in some hormone-dependent diseases. Numerous clinical studies claim benefits of genistein and daidzein in chemoprevention of breast and prostate cancer, cardiovascular disease and osteoporosis as well as in relieving postmenopausal symptoms. The ability of isoflavones to prevent cancer and other chronic diseases largely depends on pharmacokinetic properties of these compounds, in particular absorption and distribution to the target tissue. The chemical form in which isoflavones occur is important because it influences their bioavailability and, therefore, their biological activity. Glucose-conjugated isoflavones are highly polar, water-soluble compounds. They are hardly absorbed by the intestinal epithelium and have weaker biological activities than the corresponding aglycone. Different microbial families of colon can transform glycosylated isoflavones into aglycones. Clinical studies show important differences between the aglycone and conjugated forms of genistein and daidzein. The evaluation of isoflavone metabolism and bioavailability is crucial to understanding their biological effects. Lipid-based formulations such as drug incorporation into oils, emulsions and self-microemulsifying formulations have been introduced to increase bioavailability. Complexation with cyclodextrin also represent a valid method to improve the physicochemical characteristics of these substances in order to be absorbed and distributed to target tissues. We review and discuss pharmacokinetic issues that critically influence the biological activity of isoflavones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ER:

Estrogen receptors

HRT:

Hormone replacement therapy

AUC:

Area under the plasma concentration curve

T max :

Time to maximum concentration

IFG:

Isoflavone glucoside

TVP:

Textured vegetable protein

C max :

Maximum plasma concentration

t 1/2 :

Plasma concentration half-life

AUC0−t :

Area under the plasma concentration curve administration to last observed concentration at time t

SMEDDS:

Self-microemulsifying drug delivery system

IFE:

Isoflavone extract

CD:

Cyclodextrins

References

  • Adlercreutz H (1995) Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect 103(Suppl 7):103–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adlercreutz H (1998) Epidemiology of phytoestrogens. Baillieres Clin Endocrinol Metab 12(4):605–623

    CAS  PubMed  Google Scholar 

  • Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann Med 29(2):95–120

    CAS  PubMed  Google Scholar 

  • Adlercreutz H, Bannwart C, Wahala K, Makela T, Brunow G, Hase T, Arosemena PJ, Kellis JT Jr, Vickery LE (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 44(2):147–153

    CAS  PubMed  Google Scholar 

  • Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262(12):5592–5595

    CAS  PubMed  Google Scholar 

  • Atkinson C, Compston JE, Day NE, Dowsett M, Bingham SA (2004) The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 79(2):326–333

    CAS  PubMed  Google Scholar 

  • Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood) 230(3):155–170

    CAS  Google Scholar 

  • Axelson M, Kirk DN, Farrant RD, Cooley G, Lawson AM, Setchell KD (1982) The identification of the weak oestrogen equol [7-hydroxy-3-(4′-hydroxyphenyl)chroman] in human urine. Biochem J 201(2):353–357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bannwart C, Fotsis T, Heikkinen R, Adlercreutz H (1984) Identification of the isoflavonic phytoestrogen daidzein in human urine. Clin Chim Acta 136(2–3):165–172

    CAS  PubMed  Google Scholar 

  • Bouker KB, Hilakivi-Clarke L (2000) Genistein: does it prevent or promote breast cancer? Environ Health Perspect 108(8):701–708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breckwoldt M, Keck C, Karck U (1995) Benefits and risks of hormone replacement therapy (HRT). J Steroid Biochem Mol Biol 53(1–6):205–208

    CAS  PubMed  Google Scholar 

  • Cassidy A (1996) Physiological effects of phyto-oestrogens in relation to cancer and other human health risks. Proc Nutr Soc 55(1B):399–417

    CAS  PubMed  Google Scholar 

  • Cassidy A, Bingham S, Setchell K (1995) Biological effects of isoflavones in young women: importance of the chemical composition of soyabean products. Br J Nutr 74(4):587–601

    CAS  PubMed  Google Scholar 

  • Cassidy A, Brown JE, Hawdon A, Faughnan MS, King LJ, Millward J, Zimmer-Nechemias L, Wolfe B, Setchell KD (2006) Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J Nutr 136(1):45–51

    CAS  PubMed  Google Scholar 

  • Cauley JA, Robbins J, Chen Z, Cummings SR, Jackson RD, LaCroix AZ, LeBoff M, Lewis CE, McGowan J, Neuner J, Pettinger M, Stefanick ML, Wactawski-Wende J, Watts NB (2003) Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290(13):1729–1738. doi:10.1001/jama.290.13.1729

    CAS  PubMed  Google Scholar 

  • Chen J, Lin H, Hu M (2003) Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther 304(3):1228–1235. doi:10.1124/jpet.102.046409

    CAS  PubMed  Google Scholar 

  • Chen J, Lin H, Hu M (2005) Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol 55(2):159–169. doi:10.1007/s00280-004-0842-x

    CAS  PubMed  Google Scholar 

  • Cignarella A, Kratz M, Bolego C (2010) Emerging role of estrogen in the control of cardiometabolic disease. Trends Pharmacol Sci 31(4):183–189. doi:10.1016/j.tips.2010.01.001

    CAS  PubMed  Google Scholar 

  • Clarkson TB (2002) Soy, soy phytoestrogens and cardiovascular disease. J Nutr 132(3):566S–569S

    PubMed  Google Scholar 

  • Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon R (1995) Flavonoids as DNA topoisomerase antagonists and poisons: structure–activity relationships. J Nat Prod 58(2):217–225

    CAS  PubMed  Google Scholar 

  • Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65(8):995–1016. doi:10.1016/j.phytochem.2004.03.005

    CAS  PubMed  Google Scholar 

  • Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA (2006) International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 58(4):773–781. doi:10.1124/pr.58.4.8

    CAS  PubMed  Google Scholar 

  • Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436(1):71–75

    CAS  PubMed  Google Scholar 

  • Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W (2005) Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183(1):45–55. doi:10.1007/s00203-004-0747-4

    CAS  PubMed  Google Scholar 

  • deVere White RW, Tsodikov A, Stapp EC, Soares SE, Fujii H, Hackman RM (2010) Effects of a high dose, aglycone-rich soy extract on prostate-specific antigen and serum isoflavone concentrations in men with localized prostate cancer. Nutr Cancer 62(8):1036–1043. doi:10.1080/01635581.2010.492085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diel P, Schulz T, Smolnikar K, Strunck E, Vollmer G, Michna H (2000) Ability of xeno- and phytoestrogens to modulate expression of estrogen-sensitive genes in rat uterus: estrogenicity profiles and uterotropic activity. J Steroid Biochem Mol Biol 73(1–2):1–10

    CAS  PubMed  Google Scholar 

  • Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261. doi:10.1146/annurev.arplant.55.031903.141729

    CAS  PubMed  Google Scholar 

  • Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110(Suppl 3):349–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W, Hass BS, Xie Q, Dial SL, Moland CL, Sheehan DM (2001) Structure–activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol 14(3):280–294

    CAS  PubMed  Google Scholar 

  • Fanti P, Sawaya BP, Custer LJ, Franke AA (1999) Serum levels and metabolic clearance of the isoflavones genistein and daidzein in hemodialysis patients. J Am Soc Nephrol 10(4):864–871

    CAS  PubMed  Google Scholar 

  • Farnsworth NR, Bingel AS, Cordell GA, Crane FA, Fong HH (1975) Potential value of plants as sources of new antifertility agents I. J Pharm Sci 64(4):535–598

    CAS  PubMed  Google Scholar 

  • Fotsis T, Pepper MS, Montesano R, Aktas E, Breit S, Schweigerer L, Rasku S, Wahala K, Adlercreutz H (1998) Phytoestrogens and inhibition of angiogenesis. Baillieres Clin Endocrinol Metab 12(4):649–666

    CAS  PubMed  Google Scholar 

  • Franke AA, Custer LJ, Wang W, Shi CY (1998) HPLC analysis of isoflavonoids and other phenolic agents from foods and from human fluids. Proc Soc Exp Biol Med 217(3):263–273

    CAS  PubMed  Google Scholar 

  • Gershanik T, Benita S (2000) Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 50(1):179–188

    CAS  PubMed  Google Scholar 

  • Hillier SG, Anderson RA, Williams AR, Tetsuka M (1998) Expression of oestrogen receptor alpha and beta in cultured human ovarian surface epithelial cells. Mol Hum Reprod 4(8):811–815

    CAS  PubMed  Google Scholar 

  • Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB (1995) Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 62(6):1276–1282

    CAS  PubMed  Google Scholar 

  • Hollman PC, vd Gaag M, Mengelers MJ, van Trijp JM, de Vries JH, Katan MB (1996) Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radic Biol Med 21(5):703–707

    CAS  PubMed  Google Scholar 

  • Hu M, Chen J, Lin H (2003) Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther 307(1):314–321. doi:10.1124/jpet.103.053496

    CAS  PubMed  Google Scholar 

  • Hutchins AM, Slavin JL, Lampe JW (1995) Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J Am Diet Assoc 95(5):545–551. doi:10.1016/S0002-8223(95)00149-2

    CAS  PubMed  Google Scholar 

  • Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130(7):1695–1699

    CAS  PubMed  Google Scholar 

  • Joannou GE, Kelly GE, Reeder AY, Waring M, Nelson C (1995) A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol 54(3–4):167–184

    CAS  PubMed  Google Scholar 

  • Jordan VC (1990) The only true antiestrogen is no estrogen. Mol Cell Endocrinol 74(3):C91–C95

    CAS  PubMed  Google Scholar 

  • Kampa M, Nifli AP, Notas G, Castanas E (2007) Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol 159:79–113. doi:10.1007/112_2006_0702

    CAS  PubMed  Google Scholar 

  • Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, Lee HB, Cho SH (2004) Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm 274(1–2):65–73. doi:10.1016/j.ijpharm.2003.12.028

    CAS  PubMed  Google Scholar 

  • Kapiotis S, Hermann M, Held I, Seelos C, Ehringer H, Gmeiner BM (1997) Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17(11):2868–2874

    CAS  PubMed  Google Scholar 

  • Kelly GE, Nelson C, Waring MA, Joannou GE, Reeder AY (1993) Metabolites of dietary (soya) isoflavones in human urine. Clin Chim Acta 223(1–2):9–22

    CAS  PubMed  Google Scholar 

  • Khosla S, Melton LJ 3rd, Riggs BL (2011) The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26(3):441–451. doi:10.1002/jbmr.262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim H, Peterson TG, Barnes S (1998) Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am J Clin Nutr 68(6 Suppl):1418S–1425S

    CAS  PubMed  Google Scholar 

  • Kim SL, Berhow MA, Kim JT, Chi HY, Lee SJ, Chung IM (2006) Evaluation of soyasaponin, isoflavone, protein, lipid, and free sugar accumulation in developing soybean seeds. J Agric Food Chem 54(26):10003–10010. doi:10.1021/jf062275p

    CAS  PubMed  Google Scholar 

  • King RA, Bursill DB (1998) Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am J Clin Nutr 67(5):867–872

    CAS  PubMed  Google Scholar 

  • Knight DC, Eden JA, Kelly GE (1996) The phytoestrogen content of infant formulas. Med J Aust 164(9):575

    CAS  PubMed  Google Scholar 

  • Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93(12):5925–5930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870

    CAS  PubMed  Google Scholar 

  • Lee SH, Kim YH, Yu HJ, Cho NS, Kim TH, Kim DC, Chung CB, Hwang YI, Kim KH (2007) Enhanced bioavailability of soy isoflavones by complexation with beta-cyclodextrin in rats. Biosci Biotechnol Biochem 71(12):2927–2933

    CAS  PubMed  Google Scholar 

  • Levis S, Strickman-Stein N, Ganjei-Azar P, Xu P, Doerge DR, Krischer J (2011) Soy isoflavones in the prevention of menopausal bone loss and menopausal symptoms: a randomized, double-blind trial. Arch Intern Med 171(15):1363–1369. doi:10.1001/archinternmed.2011.330

    CAS  PubMed  Google Scholar 

  • Linassier C, Pierre M, Le Pecq JB, Pierre J (1990) Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. Biochem Pharmacol 39(1):187–193

    CAS  PubMed  Google Scholar 

  • Majumdar AP (1990) Role of tyrosine kinases in gastrin induction of ornithine decarboxylase in colonic mucosa. Am J Physiol 259(4 Pt 1):G626–G630

    CAS  PubMed  Google Scholar 

  • Matthies A, Clavel T, Gutschow M, Engst W, Haller D, Blaut M, Braune A (2008) Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 74(15):4847–4852. doi:10.1128/AEM.00555-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazur WM, Wahala K, Rasku S, Salakka A, Hase T, Adlercreutz H (1998) Lignan and isoflavonoid concentrations in tea and coffee. Br J Nutr 79(1):37–45

    CAS  PubMed  Google Scholar 

  • McFarlane GT, Cumming JH (1991) The colonic flora, fermentation, and large bowel digestive function. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, pathophysiology and disease. Raven Press, New York

    Google Scholar 

  • McMahon LG, Nakano H, Levy MD, Gregory JF 3rd (1997) Cytosolic pyridoxine-beta-d-glucoside hydrolase from porcine jejunal mucosa. Purification, properties, and comparison with broad specificity beta-glucosidase. J Biol Chem 272(51):32025–32033

    CAS  PubMed  Google Scholar 

  • Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70(3 Suppl):439S–450S

    CAS  PubMed  Google Scholar 

  • Messina M, Bennink M (1998) Soyfoods, isoflavones and risk of colonic cancer: a review of the in vitro and in vivo data. Baillieres Clin Endocrinol Metab 12(4):707–728

    CAS  PubMed  Google Scholar 

  • Messina MJ, Persky V, Setchell KD, Barnes S (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21(2):113–131. doi:10.1080/01635589409514310

    CAS  PubMed  Google Scholar 

  • Murkies AL, Wilcox G, Davis SR (1998) Clinical review 92: phytoestrogens. J Clin Endocrinol Metab 83(2):297–303

    CAS  PubMed  Google Scholar 

  • Murphy PA, Song T, Buseman G, Barua K, Beecher GR, Trainer D, Holden J (1999) Isoflavones in retail and institutional soy foods. J Agric Food Chem 47(7):2697–2704

    CAS  PubMed  Google Scholar 

  • Nilsson BO, Olde B, Leeb-Lundberg LM (2011) G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. Br J Pharmacol 163(6):1131–1139. doi:10.1111/j.1476-5381.2011.01235.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okura T, Ibe M, Umegaki K, Shinozuka K, Yamada S (2010) Effects of dietary ingredients on function and expression of P-glycoprotein in human intestinal epithelial cells. Biol Pharm Bull 33(2):255–259

    CAS  PubMed  Google Scholar 

  • Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS (1997) Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277(5331):1508–1510

    CAS  PubMed  Google Scholar 

  • Pereira MA, Barnes LH, Rassman VL, Kelloff GV, Steele VE (1994) Use of azoxymethane-induced foci of aberrant crypts in rat colon to identify potential cancer chemopreventive agents. Carcinogenesis 15(5):1049–1054

    CAS  PubMed  Google Scholar 

  • Peterson G, Barnes S (1991) Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem Biophys Res Commun 179(1):661–667

    CAS  PubMed  Google Scholar 

  • Peterson G, Barnes S (1993) Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 22(4):335–345

    CAS  PubMed  Google Scholar 

  • Piazza C, Privitera MG, Melilli B, Incognito T, Marano MR, Leggio GM, Roxas MA, Drago F (2007) Influence of inulin on plasma isoflavone concentrations in healthy postmenopausal women. Am J Clin Nutr 86(3):775–780

    CAS  PubMed  Google Scholar 

  • Picherit C, Coxam V, Bennetau-Pelissero C, Kati-Coulibaly S, Davicco MJ, Lebecque P, Barlet JP (2000) Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats. J Nutr 130(7):1675–1681

    CAS  PubMed  Google Scholar 

  • Price KR, Fenwick GR (1985) Naturally occurring oestrogens in foods—a review. Food Addit Contam 2(2):73–106. doi:10.1080/02652038509373531

    CAS  PubMed  Google Scholar 

  • Rafii F, Jackson LD, Ross I, Heinze TM, Lewis SM, Aidoo A, Lyn-Cook L, Manjanatha M (2007) Metabolism of daidzein by fecal bacteria in rats. Comp Med 57(3):282–286

    CAS  PubMed  Google Scholar 

  • Rice S, Mason HD, Whitehead SA (2006) Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J Steroid Biochem Mol Biol 101(4–5):216–225. doi:10.1016/j.jsbmb.2006.06.021

    CAS  PubMed  Google Scholar 

  • Richelle M, Pridmore-Merten S, Bodenstab S, Enslen M, Offord EA (2002) Hydrolysis of isoflavone glycosides to aglycones by beta-glycosidase does not alter plasma and urine isoflavone pharmacokinetics in postmenopausal women. J Nutr 132(9):2587–2592

    CAS  PubMed  Google Scholar 

  • Rufer CE, Bub A, Moseneder J, Winterhalter P, Sturtz M, Kulling SE (2008) Pharmacokinetics of the soybean isoflavone daidzein in its aglycone and glucoside form: a randomized, double-blind, crossover study. Am J Clin Nutr 87(5):1314–1323

    PubMed  Google Scholar 

  • Sargeant P, Farndale RW, Sage SO (1993) The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Lett 315(3):242–246

    CAS  PubMed  Google Scholar 

  • Setchell KD (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68(6 Suppl):1333S–1346S

    CAS  PubMed  Google Scholar 

  • Setchell KD, Adlercreutz H (1988) Mammalian lignans and phyto-oestrogens: recent studies on their formation, metabolism and biological role in health and disease. In: Rowland IR (ed) Role of gut flora in toxicity and cancer. Academic Press, San Diego, pp 315–345

    Google Scholar 

  • Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129(3):758S–767S

    CAS  PubMed  Google Scholar 

  • Setchell KD, Clerici C (2010) Equol: history, chemistry, and formation. J Nutr 140(7):1355S–1362S. doi:10.3945/jn.109.119776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Setchell KD, Borriello SP, Hulme P, Kirk DN, Axelson M (1984) Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr 40(3):569–578

    CAS  PubMed  Google Scholar 

  • Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS, Cassidy A, Heubi JE (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr 131(4 Suppl):1362S–1375S

    CAS  PubMed  Google Scholar 

  • Setchell KD, Brown NM, Lydeking-Olsen E (2002a) The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J Nutr 132(12):3577–3584

    CAS  PubMed  Google Scholar 

  • Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002b) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76(2):447–453

    CAS  PubMed  Google Scholar 

  • Setchell KD, Brown NM, Desai PB, Zimmer-Nechimias L, Wolfe B, Jakate AS, Creutzinger V, Heubi JE (2003a) Bioavailability, disposition, and dose–response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J Nutr 133(4):1027–1035

    CAS  PubMed  Google Scholar 

  • Setchell KD, Faughnan MS, Avades T, Zimmer-Nechemias L, Brown NM, Wolfe BE, Brashear WT, Desai P, Oldfield MF, Botting NP, Cassidy A (2003b) Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am J Clin Nutr 77(2):411–419

    CAS  PubMed  Google Scholar 

  • Sfakianos J, Coward L, Kirk M, Barnes S (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr 127(7):1260–1268

    CAS  PubMed  Google Scholar 

  • Shah NH, Carvajal MT, Patel CI, Infeld MH, Malick AW (1994) Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm 106:15–23

    CAS  Google Scholar 

  • Shen Q, Li X, Yuan D, Jia W (2010) Enhanced oral bioavailability of daidzein by self-microemulsifying drug delivery system. Chem Pharm Bull (Tokyo) 58(5):639–643

    CAS  Google Scholar 

  • Song KB, Atkinson C, Frankenfeld CL, Jokela T, Wahala K, Thomas WK, Lampe JW (2006) Prevalence of daidzein-metabolizing phenotypes differs between Caucasian and Korean American women and girls. J Nutr 136(5):1347–1351

    CAS  PubMed  Google Scholar 

  • Strom SS, Yamamura Y, Duphorne CM, Spitz MR, Babaian RJ, Pillow PC, Hursting SD (1999) Phytoestrogen intake and prostate cancer: a case–control study using a new database. Nutr Cancer 33(1):20–25. doi:10.1080/01635589909514743

    CAS  PubMed  Google Scholar 

  • van der Meijden PE, Feijge MA, Swieringa F, Gilio K, Nergiz-Unal R, Hamulyak K, Heemskerk JW (2012) Key role of integrin alpha(IIb)beta (3) signaling to Syk kinase in tissue factor-induced thrombin generation. Cell Mol Life Sci. doi:10.1007/s00018-012-1033-2

    PubMed Central  PubMed  Google Scholar 

  • Walsh KR, Haak SJ, Bohn T, Tian Q, Schwartz SJ, Failla ML (2007) Isoflavonoid glucosides are deconjugated and absorbed in the small intestine of human subjects with ileostomies. Am J Clin Nutr 85(4):1050–1056

    CAS  PubMed  Google Scholar 

  • Watanabe S, Yamaguchi M, Sobue T, Takahashi T, Miura T, Arai Y, Mazur W, Wahala K, Adlercreutz H (1998) Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). J Nutr 128(10):1710–1715

    CAS  PubMed  Google Scholar 

  • Wei H, Cai Q, Rahn RO (1996) Inhibition of UV light- and Fenton reaction-induced oxidative DNA damage by the soybean isoflavone genistein. Carcinogenesis 17(1):73–77

    CAS  PubMed  Google Scholar 

  • Whitten PL, Patisaul HB (2001) Cross-species and interassay comparisons of phytoestrogen action. Environ Health Perspect 109(Suppl 1):5–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilcox JN, Blumenthal BF (1995) Thrombotic mechanisms in atherosclerosis: potential impact of soy proteins. J Nutr 125(3 Suppl):631S–638S

    CAS  PubMed  Google Scholar 

  • Xu X, Wang HJ, Murphy PA, Cook L, Hendrich S (1994) Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J Nutr 124(6):825–832

    CAS  PubMed  Google Scholar 

  • Xu X, Harris KS, Wang HJ, Murphy PA, Hendrich S (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125(9):2307–2315

    CAS  PubMed  Google Scholar 

  • Xu X, Wang HJ, Murphy PA, Hendrich S (2000) Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women. J Nutr 130(4):798–801

    CAS  PubMed  Google Scholar 

  • Yamashita Y, Kawada S, Nakano H (1990) Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol. Biochem Pharmacol 39(4):737–744

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang GJ, Song TT, Murphy PA, Hendrich S (1999) Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. J Nutr 129(5):957–962

    CAS  PubMed  Google Scholar 

  • Zhou JR, Gugger ET, Tanaka T, Guo Y, Blackburn GL, Clinton SK (1999) Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice. J Nutr 129(9):1628–1635

    CAS  PubMed  Google Scholar 

  • Zubik L, Meydani M (2003) Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am J Clin Nutr 77(6):1459–1465

    CAS  PubMed  Google Scholar 

  • Zumoff B (1993) Biological and endocrinological insights into the possible breast cancer risk from menopausal estrogen replacement therapy. Steroids 58(5):196–204

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Salomone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, D.C., Piazza, C., Melilli, B. et al. Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 38, 15–25 (2013). https://doi.org/10.1007/s13318-012-0112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-012-0112-y

Keywords

Navigation