Skip to main content
Log in

Biology and biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary in oilseed Brassicas

  • Review
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen infecting over 500 host species including oilseed Brassicas. The fungus forms sclerotia which are the asexual resting structures that can survive in the soil for several years and infect host plants by producing ascospores or mycelium. Therefore, disease management is difficult due to the long term survivability of sclerotia. Biological control with antagonistic fungi, including Coniothyrium minitans and Trichoderma spp, has been reported, however, efficacy of these mycoparasites is not consistent in the field. In contrast, a number of bacterial species, such as Pseudomonas and Bacillus display potential antagonism against S. sclerotiorum. More recently, the sclerotia-inhabiting strain Bacillus cereus SC-1, demonstrated potential in reducing stem rot disease incidence of canola both in controlled and natural field conditions via antibiosis. Therefore, biocontrol agents based on bacteria could pave the way for sustainable management of S. sclerotiorum in oilseed cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abawi G, Grogan R (1979) Epidemiology of plant diseases caused by Sclerotinia species. Phytopathology 69:899

    Article  Google Scholar 

  • Abawi G, Polach F, Molin W (1975a) Infection of bean by ascospores of Whetzelinia sclerotiorum. Phytopathology 65(6):673–678

    Article  Google Scholar 

  • Abawi G, Provvidenti R, Hunter J (1975b) Evaluating bean germplasm for resistance to Wetzelinia sclerotiorum. Ann Proc Am Phytopathol Soc 2:50

    Google Scholar 

  • Adams P (1979) Comparison of antagonists of Sclerotinia species. Phytopathology 79(12):1345–1347

    Article  Google Scholar 

  • Adams P, Ayers W (1979) Ecology of Sclerotinia species. Phytopathology 69(8):896–899

    Article  Google Scholar 

  • Adams P, Ayers W (1981) Sporidesmium sclerotivorum: distribution and function in natural biological control of sclerotial fungi. Phytopathology 71:90–93

    Article  Google Scholar 

  • Aghajani MA, Safaei N, Alizadeh A (2008) Sclerotinia infection situation of canola in Golestan province. In: The 18th Iranian Plant Protection Congress, Hamedan, Iran p 52

  • Agrios GN (2005) Plant pathology, vol 5. Elsevier Academic, New York

    Google Scholar 

  • Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E (2012) The plant associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112(1):159–174

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30(1):603–635

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2001) Canola growers manual, Canola council of Canada. http://www.canolacouncil.org/crop-production/canola-grower’s-manual-contents/chapter-10c-diseases/chapter-10c#sclerotiniastemrot. Accessed 14 April 2015

  • Asirifi K, Morgan WC, Parbery D (1994) Suppression of Sclerotinia soft rot of lettuce with organic soil amendments. Anim Prod Sci 34(1):131–136

    Article  Google Scholar 

  • Ayers W, Adams P (1979) Mycoparasitism of sclerotia of Sclerotinia and Sclerotium species by Sporidesmium sclerotivorum. Can J Microbiol 25(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Bailey KL (1996) Diseases under conservation tillage systems. Can J Plant Sci 76(4):635–639

    Article  Google Scholar 

  • Bailey K, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72(2):169–180

    Article  Google Scholar 

  • Barbetti MJ, Banga SK, Fu TD, Li YC, Singh D, Liu SY, Ge XT, Banga SS (2014) Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica 197(1):47–59

    Article  Google Scholar 

  • Bardin S, Huang H (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol 23(1):88–98

    Article  Google Scholar 

  • Bary A, Garnsey HEF, Balfour IB (1887) Comparative morphology and biology of the fungi, mycetozoa and bacteria. Clarendon, Oxford

    Book  Google Scholar 

  • Bateman D, Beer S (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:204–211

    CAS  PubMed  Google Scholar 

  • Bell A, Liu L, Reidy B, Davis R, Subbarao K (1998) Mechanisms of subsurface drip irrigation-mediated suppression of lettuce drop caused by Sclerotinia minor. Phytopathology 88(3):252–259

    Article  CAS  PubMed  Google Scholar 

  • Bevivino A (2000) Efficacy of Burkholderia cepacia MCI7 in disease suppression and growth promotion of maize. Biol Fertil Soils 31:225–231

    Article  Google Scholar 

  • Bevivino A, Peggion V, Chiarini L, Tabacchioni S, Cantale C, Dalmastri C (2005) Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations. Res Microbiol 156(10):974–983

    Article  PubMed  Google Scholar 

  • Blanchette BL, Auld DL (1978) Screening field peas for resistance to white mold. Crop Sci 18(6):977–978

    Article  Google Scholar 

  • Bourdôt G, Hurrell G, Saville D, DeJong D (2001) Risk analysis of Sclerotinia sclerotiorum for biological control of Cirsium arvense in pasture: ascospore dispersal. Biocontrol Sci Tech 11(1):119–139

    Article  Google Scholar 

  • Boyetchko SM (1999) Biological control agents of canola and rapeseed diseases-status and practical approaches. In: Mukerji KG, Chamóla ВP, Upadhyay RK (eds) Biotechnological approaches in biocontrol of plant pathogens. Kluwer, NY, pp 51–71

    Chapter  Google Scholar 

  • Buchwaldt L, Yu F, Rimmer S, Hegedus D (2003) Resistance to Sclerotinia sclerotiorum in a Chinese Brassica napus cultivar. In: 8th International Congress of Plant Pathology, Christchurch, New Zealand

  • Caesar AJ, Pearson RC (1982) Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. 73:1024–1030

  • Campbell W (1947) A new species of Coniothyrium parasitic on sclerotia. Mycologia 190–195

  • Cañizares MC, Pérez-Artés E, García-Pedrajas MD (2014) The complete nucleotide sequence of a novel partitivirus isolated from the plant pathogenic fungus Verticillium albo-atrum. Arch Virol 159(11):3141–3144

    Article  PubMed  CAS  Google Scholar 

  • Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12(11):2191–2199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaudhury B (1993) Yield loss estimation by (Sclerotinia sclerotiorum)(Lib.) de Bary. J Agric Anim Sci 14:113

    Google Scholar 

  • Chen Y, Gao X, Chen Y, Qin H, Huang L, Han Q (2014) Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed. Biol Control 78:67–76

    Article  CAS  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14(6):277–286

    Article  CAS  PubMed  Google Scholar 

  • Clarkson JP, Phelps K, Whipps JM, Young CS, Smith JA, Watling M (2004) Forecasting Sclerotinia disease on lettuce: toward developing a prediction model for carpogenic germination of sclerotia. Phytopathology 94(3):268–279

    Article  PubMed  Google Scholar 

  • Coffelt T, Porter D (1982) Screening peanuts for resistance to Sclerotinia blight. Plant Dis 66(5):385–387

    Article  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. Am Phytopathol Soc

  • Cotton P, Rascle C, Fevre M (2002) Characterization of PG2, an early endoPG produced by Sclerotinia sclerotiorum, expressed in yeast. FEMS Microbiol Lett 213(2):239–244

    Article  CAS  PubMed  Google Scholar 

  • De Vrije T, Antoine N, Buitelaar R, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones E, Lüth P, Oostra J (2001) The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl Microbiol Biotechnol 56(1):58–68

    Article  PubMed  Google Scholar 

  • Dueck J (1977) Sclerotinia in rapeseed. Can Agric 22:7–9

    Google Scholar 

  • Dueck J, Morrall R, McKenzie D (1983) Control of Sclerotinia sclerotiorum in rapeseed with fungicides. Can J Plant Pathol 5(4):289–293

    Article  CAS  Google Scholar 

  • Dueckz J, Sedun FS (1983) Distribution of Sclerotinia sclerotiorum in western Canada as indicated by sclerotial levels in rapeseed unloaded in Vancouver. Can Plant Dis Surv 63(1):27–29

    Google Scholar 

  • Duncan RW (2003) Evaluation of host tolerance, biological, chemical, and cultural control of Sclerotini sclerotiorum in sunflower (Helianthus annuus L.). University of Manitoba, Manitoba

    Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2004) Ecofriendly methods in combating Sclerotinia sclerotiorum (Lib.) de Bary. In: Recent Research in Developmental and Environmental Biology, vol 1, vol 2. Research Signpost, Kerala, pp 329–347

    Google Scholar 

  • Fernando W, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37(5):955–964

    Article  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26(2):100–107

    Article  Google Scholar 

  • Fuller P, Coyne D, Steadman J (1984) Inheritance of resistance to white mold disease in a diallel cross of dry beans. Crop Sci 24(5):929–933

    Article  Google Scholar 

  • Gan LI, Meng JL, Gan L (1999) Analysis on the genetic diversity of loci homologous to disease resistant genes in Brassica genus. J Huazhong Agric Univ 18:540–542

    Google Scholar 

  • Gao X, Han Q, Chen Y, Qin H, Huang L, Kang Z (2013) Biological control of oilseed rape Sclerotinia stem rot by Bacillus subtilis strain Em7. Biocontrol Sci Tech 24(1):39–52

    Article  Google Scholar 

  • Ghasolia R, Shivpuri A, Bhargava A (2004) Sclerotinia rot of Indian mustard (Brassica juncea) in Rajasthan. Indian Phytopathol 57:76–79

    Google Scholar 

  • Gilmour G (2001) Canola growers losing Benlate fungicide. Manitoba Coop 58:1

    Google Scholar 

  • Girard V, Fèvre M, Bruel C (2004) Involvement of cyclic AMP in the production of the acid protease Acp1 by Sclerotinia sclerotiorum. FEMS Microbiol Lett 237(2):227–233

    CAS  PubMed  Google Scholar 

  • Godoy G, Steadman J, Dickman M, Dam R (1990a) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37(3):179–191

    Article  CAS  Google Scholar 

  • Godoy G, Steadman J, Yuen G (1990b) Bean blossom bacteria have potential for biological control of white mold disease caused by Sclerotinia sclerotiorum. Annu Rep Bean Improv Coop 33:45–46

    Google Scholar 

  • Gracia-Garza J, Neumann S, Vyn T, Boland G (2002) Influence of crop rotation and tillage on production of apothecia by Sclerotinia sclerotiorum. Can J Plant Pathol 24(2):137–143

    Article  Google Scholar 

  • Gulya T, Rashid KY, Masirevic SM (1997) Sunflower technology and production. In: Schneiter AA (ed) Sunflower Diseases. vol 35. Madison, Wisconsin 263–379

  • Hannusch D, Boland G (1996) Influence of air temperature and relative humidity on biological control of white mold of bean (Sclerotinia sclerotiorum). Phytopathology 86(2):156–162

    Article  Google Scholar 

  • Hayes RJ, Wu BM, Pryor BM, Chitrampalam P, Subbarao KV (2010) Assessment of resistance in lettuce (Lactuca sativa L.) to mycelial and ascospore infection by Sclerotinia minor Jagger and S. sclerotiorum (Lib.) de Bary. HortScience 45(3):333–341

    Google Scholar 

  • Hebbar KP, Martel MH, Heulin T (1994) Burkholderia cepacia, a plant growth promoting rhizobacterial associate of maize. In: In: Ryder MH, Stephens PM, Bowen GD (eds) Third international workshop on plant growth-promoting rhizobacteria. CSIRO, Adelaide, pp 201–203

    Google Scholar 

  • Heungens K, Parke J (2000) Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Appl Environ Microbiol 66(12):5192–5200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hind-Lanoiselet T, Lewington F (2004) Canola concepts: managing sclerotinia. NSW Department of Primary Industries AgNote: 490

  • Hind-Lanoiselet T, Ash GJ, Murray GM (2003) Prevalence of sclerotinia stem rot of canola in New South Wales. Anim Prod Sci 43(2):163–168

    Article  Google Scholar 

  • Hind-Lanoiselet T, Lewington F, Lindbeck K (2008) Managing sclerotinia stem rot in canola. NSW Department of Primary Industries, Australia AgReport

  • Howell C, Stipanovic R (1995) Mechanisms in the biocontrol of Rhizoctonia solani-induced cotton seedling disease by Gliocladium virens: antibiosis. Phytopathology 85(4):469–472

    Article  Google Scholar 

  • Hu X, Roberts DP, Xie L, Maul JE, Yu C, Li Y, Jing M, Liao X, Che Z, Liao X (2013a) Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field. Biol Control 70:54–64

    Article  Google Scholar 

  • Hu X, Roberts DP, Xie L, Maul JE, Yu C, Li Y, Zhang S, Liao X (2013b) Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth. Crop Prot 52:151–158

    Article  Google Scholar 

  • Huang H (1978) Gliocladium catenulatum: hyperparasite of Sclerotinia sclerotiorum and Fusarium species. Can J Bot 56(18):2243–2246

    Article  Google Scholar 

  • Hunter J, Abawi G, Crosier D (1978) Effects of timing, coverage, and spray oil on control of white mold of snap bean with benomyl. Plant Dis Rep 62(7):633–637

    Google Scholar 

  • Jacobsen B, Zidack N, Larson B (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94(11):1272–1275

    Article  CAS  PubMed  Google Scholar 

  • Jayaswal R, Fernandez M, Upadhyay R, Visintin L, Kurz M, Webb J, Rinehart K (1993) Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr Microbiol 26(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Fu Y, Guoqing L, Ghabrial SA (2013) Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum. Adv Virus Res 86

  • Kamal MM, Lindbeck KD, Savocchia S, Ash GJ (2015) Biological control of sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol 64:1375–1384

  • Kang Y, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64(10):3939–3947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kapoor K, Sharma S, Gangopadhyay S (1989) Assessment of resistance in eggplant against Sclerotinia wilt with a new screening technique. Capsicum Newsl 8:70

    Google Scholar 

  • Khangura R, MacLeod WJ (2012) Managing the risk of Sclerotinia stem rot in canola. Farm note vol 546. Department of Agriculture and Food, Western Australia

  • Khangura R, Van Burgel A, Salam M, Aberra M, MacLeod WJ (2014) Why Sclerotinia was so bad in 2013? Understanding the disease and management options [http://www.giwa.org.au/pdfs/2014/Presented_Papers/Khangura%20et%20al%20presentation%20paper%20CU2014%20-DR.pdf]. Accessed 28 July 2015

  • Kharbanda P, Tewari J (1996) Integrated management of canola diseases using cultural methods. Can J Plant Pathol 18(2):168–175

    Article  Google Scholar 

  • Kirkegaard JA, Robertson MJ, Hamblin P, Sprague SJ (2006) Effect of blackleg and sclerotinia stem rot on canola yield in the high rainfall zone of southern New South Wales, Australia. Aust J Agric Res 57(2):201–212

    Article  Google Scholar 

  • Kohli Y, Kohn LM (1998) Random association among alleles in clonal populations of Sclerotinia sclerotiorum. Fungal Genet Biol 23(2):139–149

    Article  CAS  PubMed  Google Scholar 

  • Koike S (2000) Occurrence of stem rot of basil, caused by Sclerotinia sclerotiorum, in coastal California. Plant Dis 84(12):1342–1342

    Article  Google Scholar 

  • Krueger W, Stoltenberg J (1983) Control of rape diseases II. Measures for disease reduction caused by Sclerotinia sclerotiorum with consideration to economical aspects. Phytopathol Z 108:114–126

    Article  Google Scholar 

  • Krüger W (1975) Influence of the weather on attack of rape by Sclerotinia sclerotiorum (Lib.) de Bary. Nachrichtenbl Deutsch Pflanzenschutzdienst 27:1–6

    Google Scholar 

  • Kurle JE, Grau CR, Oplinger ES, Mengistu A (2001) Tillage, crop sequence, and cultivar effects on Sclerotinia stem rot incidence and yield in soybean. Agron J 93(5):973–982

    Article  Google Scholar 

  • Lamey H, Nelson B, Gulya T (1998) Incidence of Sclerotinia stem rot on canola in North Dakota and Minnesota, 1991–1997. In: Proc. Int. Sclerotinia Workshop, Fargo, ND 7–9

  • Lamey A, Knodel J, Endres G, Andol K, Ashley R, Barondeau D, Craig B, Crary V, Fore Z, Johnson N (2001) Canola disease survey in Minnesota and North Dakota, vol 71. North Dakota State University, North Dakota

    Google Scholar 

  • Le Tourneau D (1979) Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology 69(8):887–890

    Article  Google Scholar 

  • Li W, Roberts D, Dery P, Meyer S, Lohrke S, Lumsden R, Hebbar K (2002) Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21(2):129–135

    Article  Google Scholar 

  • Li GQ, Huang HC, Miao HJ, Erickson RS, Jiang DH, Xiao YN (2006) Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. Eur J Plant Pathol 114(4):345–355

    Article  Google Scholar 

  • Li C, Liu S, Sivasithamparam K, Barbetti M (2009) New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and B. juncea germplasm screened under Western Australian conditions. Aust Plant Pathol 38(2):149–152

    Article  Google Scholar 

  • Lindbeck K, Davidson J, Khangura R (2014) Managing sclerotinia stem rot in canola (Northern, Southern and Western regions). Sclerotinia stem rot in canola Fact Sheet Grain Research and Development Corporation, Australia

  • Liu H, Fu Y, Jiang D, Li G, Xie J, Peng Y, Yi X, Ghabrial SA (2009) A novel mycovirus that is related to the human pathogen hepatitis E virus and rubi-like viruses. J Virol 83(4):1981–1991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lumsden R (1979) Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology 69(8):890–895

    Article  Google Scholar 

  • Luth P (2001) The biological fungicide Contans WG7-A preparation on the basis of the fungus Coniothyrium minitans. In: Proc. XI International Sclerotinia Workshop, Central Science Laboratory, York, UK 127–128

  • Lüth P, Schulz RR, Pfeffer H (1993) The influence of bacterial antagonists on the infestation of a soil as well as on the yield of winter oilseed rape affected by Sclerotinia sclerotiorum. Zentralbl Mikrobiol 148:32–32

    Google Scholar 

  • Lynch JM, Ebben MH (1986) The use of microorganisms to control plant disease. J Appl Bacteriol Symp Suppl 61:115S–126S

    Google Scholar 

  • Lyons M, Dickson M, Hunter J (1987) Recurrent selection for resistance to white mold in Phaseolus species. J Am Soc Hortic Sci 112(1):149–152

    Google Scholar 

  • Mao W, Lumsden RD, Lewis JA, Hebbar PK (1998) Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off of corn caused by species of Pythium and Fusarium. Plant Dis 82(3):294–299

    Article  Google Scholar 

  • Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol 22(3):339–345

    Article  CAS  Google Scholar 

  • McLaren D, Huang H, Rimmer S (1996) Control of apothecial production oí Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Dis 1373

  • McLean D (1958) Role of dead flower parts in infection of certain crucifers by Sclerotinia sclerotiorum (Lib.) de Bary. Plant Dis Rep 42:663–666

    Google Scholar 

  • McLoughlin TJ, Quinn JP, Bettermann A, Bookland R (1992) Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl Environ Microbiol 58:1760–1763

    PubMed Central  CAS  PubMed  Google Scholar 

  • McSpadden Gardener BB, Driks A (2004) Overview of the nature and application of biocontrol microbes: Bacillus spp. Phytopathology 94(11):1244–1244

    Article  PubMed  Google Scholar 

  • Meena PD, Kumar A, Chattopadhyay C and Sharma P (2009) Eco-friendly management of Sclerotinia rot in Indian mustard (Brassica juncea). Proc 16th Australian Research Assembly on Brassicas, Ballarat, Australia, September 14–16, pp 202–204

  • Meena P, Awasthi R, Godika S, Gupta J, Kumar A, Sandhu P, Sharma P, Rai P, Singh Y, Rathi A (2011) Eco-friendly approaches managing major diseases of Indian Mustard. World Appl Sci J 12(8):1192–1195

    CAS  Google Scholar 

  • Meena P, Chattopadhyay C, Meena P, Goyal P, Kumar VR (2014) Shelf life and efficacy of talc-based bio-formulations of Trichoderma harzianum isolates in management of Sclerotinia rot of Indian mustard (Brassica juncea). Ann Plant Prot Sci 22(1):127–135

    Google Scholar 

  • Mehta N, Hieu N, Sangwan M (2012) Efficacy of various antagonistic isolates and species of against causing white stem rot of mustard. J Mycol Plant Pathol 42(2):244–250

    Google Scholar 

  • Merriman P, Pywell M, Harrison G, Nancarrow J (1979) Survival of sclerotia of Sclerotinia sclerotiorum and effects of cultivation practices on disease. Soil Biol Biochem 11(6):567–570

    Article  Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao W (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31(1):75–86

    Google Scholar 

  • Meyers E, Bisacchi G, Dean L, Liu W, Minassian B, Slusarchyk D, Sykes R, Tanaka S, Trejo W (1987) Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J Antibiot 40(11):1515

    Article  CAS  PubMed  Google Scholar 

  • Morrall R, Dueck J (1982) Epidemiology of Sclerotinia stem rot of rapeseed in Saskatchewan. Can J Plant Pathol 4(2):161–168

    Article  Google Scholar 

  • Morrall R, Dueck J (1983) Sclerotinia stem rot of spring rapeseed in western Canada. In: Proceedings of 6th International Rapeseed Conference, Paris, France 17–19

  • Morrall R, Duczek L, Sheard J (1972) Variations and correlations within and between morphology, pathogenicity, and pectolytic enzyme activity in Sclerotinia from Saskatchewan. Can J Bot 50(4):767–786

    Article  CAS  Google Scholar 

  • Morrall R, Dueck J, McKenzie D, McGee D (1976) Some aspects of Sclerotinia sclerotiorum in Saskatchewan, 1970–75. Can Plant Dis Surv 56(2):56–62

    Google Scholar 

  • Mueller D, Dorrance A, Derksen R, Ozkan E, Kurle J, Grau C, Gaska J, Hartman G, Bradley C, Pedersen W (2002a) Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Dis 86(1):26–31

    Article  CAS  Google Scholar 

  • Mueller D, Pedersen W, Hartman G (2002b) Effect of crop rotation and tillage system on Sclerotinia stem rot on soybean. Can J Plant Pathol 24(4):450–456

    Article  Google Scholar 

  • Mueller J, Barbercheck M, Bell M, Brownie C, Creamer N, Hitt A, Hu S, King L, Linker H, Louws F (2002c) Development and implementation of a long-term agricultural systems study: challenges and opportunities. HortTechnology 12(3):362–368

    Google Scholar 

  • Mukerji K, Chamola B, Upadhyay RK (eds) (1999) Biotechnological approaches in biocontrol of plant pathogens. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  • Murray GM, Brennan JP (2012) The current and potential costs from diseases of oilseed crops in Australia. Grains Research & Development Corporation, Kingston, ACT, Australia

  • Mündel HH, Huang H, Kozub G (1985) Sclerotinia head rot in safflower: assessment of resistance and effects on yield and oil content. Can J Plant Sci 65(2):259–265

    Article  Google Scholar 

  • Nelson B (1998) Biology of Sclerotinia. In: Proceedings of the Sclerotinia workshop. North Dakota State University, Fargo, North Dakota 9–12

  • Nelson B, Helms T, Olson M (1991) Comparison of laboratory and field evaluations of resistance in soybean to Sclerotinia sclerotiorum. Plant Dis 75:662–665

    Article  Google Scholar 

  • Nelson BD, Christianson T, McClean P (2001) Effects of bacteria on sclerotia of Sclerotinia sclerotiorum. In: Proceedings of the XI international sclerotinia workshop, York, England 39–40

  • Newton H, Sequeira L (1972) Ascospores as the primary infective propagule of Sclerotinia sclerotiorum in Wisconsin. Plant Dis Rep 56(9):798–802

    Google Scholar 

  • Pachenari A, Dix N (1980) Production of toxins and wall degrading enzymes by Gliocladium roseum. Trans Br Mycol Soc 74(3):561–566

    Article  CAS  Google Scholar 

  • Pal KK, Gardener BMS (2006) Biological control of plant pathogens. Plant Healt Inst 2:1117–1142

    Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39(1):225–258

    Article  CAS  PubMed  Google Scholar 

  • Pathak A, Godika S, Jain P, Muralia S (2001) Effect of antagonistic fungi and seed dressing fungicides on the incidence of stem rot of mustard. Mycol Plant Pathol 31:327–329

    Google Scholar 

  • Pedersen E, Reddy M, Chakravarty P (1999) Effect of three species of bacteria on damping off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. Eur J For Pathol 29(2):123–134

    Article  Google Scholar 

  • Peltier AJ, Bradley CA, Chilvers MI, Malvick DK, Mueller DS, Wise KA, Esker PD (2012) Biology, yield loss and control of Sclerotinia stem rot of soybean. J Integr Pest Manag 3(2):1–7

    Article  Google Scholar 

  • Phillips A (1986) Factors affecting the parasitic activity of Gliocladium virens on sclerotia of Sclerotinia sclerotiorum and a note on its host range. J Phytopathol 116(3):212–220

    Article  Google Scholar 

  • Pope SJ, Varney PL, Sweet JB (1989) Susceptibility of cultivars of oilseed rape to S. sclerotiorum and the effect of infection on yield. Asp Appl Biol 23:451–456

    Google Scholar 

  • Poussereau N, Creton S, Billon-Grand G, Rascle C, Fevre M (2001) Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147(3):717–726

    Article  CAS  PubMed  Google Scholar 

  • Purdy L (1956) Factors affecting apothecial production by Sclerotinia sclerotiorum. Phytopathology 46:409–410

    Google Scholar 

  • Purdy LH (1979) Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69(8):875–880

    Article  Google Scholar 

  • Rimmer SR, Buchwaldt L (1995) Diseases. In: Kimber DS, McGregor DI (eds) Brassica oilseeds, production and utilization. CAB International, Wallingford, pp 111–140

    Google Scholar 

  • Riou C, Freyssinet G, Fevre M (1991) Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microbiol 57(5):1478–1484

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez M, Godeas A (2001) Comparative study of fungal antagonist Sclerotinia sclerotiorum. In: Proc XI International Sclerotinia Workshop, York, UK 125–126

  • Saharan GS, Mehta N (2008) Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer Science Busines Media BV, The Netherlands

    Book  Google Scholar 

  • Sandys‐Winsch D, Whipps J, Fenlon J, Lynch J (1994) The validity of in vitro screening methods in the search for fungal antagonists of Sclerotinia sclerotiorum causing wilt of sunflower. Biocontrol Sci Tech 4(3):269–277

    Article  Google Scholar 

  • Savchuk SC (2002) Evaluation of biological control of Sclerotinia scleroiorum on Canola (Brassica napus) in the lab, in the greenhouse, and in the field University of Manitoba, Manitiba, Canada

  • Savchuk S, Dilantha Fernando W (2004) Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microbiol Ecol 49(3):379–388

    Article  CAS  PubMed  Google Scholar 

  • Sedun F, Brown J (1989) Comparison of three methods to assess resistance in sunflower to basal stem rot caused by Sclerotinia sclerotiorum and S. minor. Plant Dis 73(1):52–55

    Article  Google Scholar 

  • Sharma P, Kumar A, Meena P, Goyal P, Salisbury P, Gurung A, Fu T, Wang Y, Barbetti M, Chattopadhyay C (2009) Search for resistance to Sclerotinia sclerotiorum in exotic and indigenous Brassica germplasm. In: Proc. of 16th Australian Research Assembly on Brassicas, Ballarat, Victoria 1–5

  • Sharma P, Meena PD, Verma PR, Saharan GS, Mehta N, Singh D, Kumar A (2015a) Sclerotinia sclerotiorum (Lib.) de Bary causing sclerotinia rot in oilseed brassicas: a review. J Oilsees Bras 6(Special):1–-44

    CAS  Google Scholar 

  • Sharma P, Verma PR, Meena PD, Kumar V, Singh D (2015b) Research progress analysis of sclerotinia rot (Sclerotinia sclerotiorum) of oilseed brassicas through bibliography. J Oilsees Bras 6(Special):45–125

    Google Scholar 

  • Shaw F, Ajrekar S (1915) The genus“Rhizoctonia” in India, vol 7. Memoirs of the department of agriculture, India Botanical series. Thacker Spink, India

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89(6):515–521

    Article  CAS  PubMed  Google Scholar 

  • Shukla A (2005) Estimation of yield losses to Indian mustard (Brassica juncea) due to Sclerotinia stem rot. J Phytol Res 18(2):267–268

    Google Scholar 

  • Smith E, Boland G (1989) A reliable method for the production and maintenance of germinated Sclerotia of Sclerotinia sclerotiorum. Can J Plant Pathol 11(1):45–48

    Article  CAS  Google Scholar 

  • Srinivasan A, Kang I, Singh R, Kaur J (2001) Evaluation of selected Trichoderma isolates against Sclerotinia sclerotiorum causing white rot of Brassica napus L In: Proc XI International Sclerotinia Workshop, York, UK 143–144

  • Steadman J (1979) Control of plant diseases caused by Sclerotinia species. Phytopathology 69:904–907

    Article  CAS  Google Scholar 

  • Steadman JR (1983) White mold-A serious yield-limiting disease of bean. Plant Dis 67(4):346–350

    Article  Google Scholar 

  • Stelfox D, Williams J, Soehngen U, Topping R (1978) Transport of Sclerotinia sclerotiorum ascospores by rapeseed pollen in Alberta. Plant Dis Rep 62:576–579

    Google Scholar 

  • Teo B, Morrall R (1985) Influence of matric potentials on carpogenic germination of sclerotia of Sclerotinia sclerotiorum. II. A comparison of results obtained with different techniques. Can J Plant Pathol 7(4):365–369

    Article  Google Scholar 

  • Tu J (1980) Gliocladium virens, a destructive mycoparasite of Sclerotinia sclerotiorum. Phytopathology 70(7):670–674

    Article  Google Scholar 

  • Turkington T, Morrall R, Gugel R (1991) Use of petal infestation to forecast Sclerotinia stem rot of canola: evaluation of early bloom sampling, 1985–90. Can J Plant Pathol 13(1):50–59

    Article  Google Scholar 

  • Uecker F, Ayers W, Adams P (1978) A new hyphomycete on sclerotia of Sclerotinia sclerotiorum. Mycotaxon 7:275–282

    Google Scholar 

  • Venette J (1998) Sclerotinia spore formation, transport and infection. In: Proc of the XI International Sclerotinia Workshop, York, UK 4–7

  • Wang H, Liu G, Zheng Y, Wang X, Yang Q (2004) Breeding of the Brassica napus cultivar Zhongshuang 9 with high-resistance to sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Sci Agric Sin 1:3

    CAS  Google Scholar 

  • Whipps JM (1987) Behaviour of fungi antagonistic to Sclerotinia sclerotiorum on plant tissue segments. J Gen Microbiol 133(6):1495–1501

    Google Scholar 

  • Whipps J, Budge S (1990) Screening for sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycol Res 94(5):607–612

    Article  Google Scholar 

  • Whipps JM, Sreenivasaprasad S, Muthumeenakshi S, Rogers CW, Challen MP (2008) Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Eur J Plant Pathol 121:323–330

    Article  Google Scholar 

  • Williams JR, Stelfox D (1980) Influence of farming practices in Alberta on germination and apothecium production of sclerotia of Sclerotinia sclerotiorum. Can J Plant Pathol 2(3):169–172

    Article  Google Scholar 

  • Winter W, Burkhard L, Baenziger I, Krebs H, Gindrat D, Frei P (1993) Rape diseases: occurrence on rape varieties, effect of fungicides, and preventive control measures. Landwirtsch Schweiz 6(10):589–596

    Google Scholar 

  • Wright P, Lewthwaite S, Triggs C, Broadhurst P (2003) Laboratory evaluation of sweetpotato (Ipomoea batatas) resistance to sclerotinia rot. N Z J Crop Hortic Sci 31(1):33–39

    Article  Google Scholar 

  • Wu H (1988) Effects of bacteria on germination and degradation of sclerotia of Sclerotinia Sclerotiorum (Lib.) de Bary. North Dakota State University, North Dakota

    Google Scholar 

  • Wu Y, Yuan J, Raza W, Shen Q, Huang Q (2014) Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. J Microbiol Biotechn 24(10):1327–1336

    Article  Google Scholar 

  • Xie J, Jiang D (2014) New Insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol 52:45–68

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y (2006) Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol 87(1):241–249

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Wang B, Wang J, Chen Y, Zhou M (2009) Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biol Control 51(1):61–65

    Article  Google Scholar 

  • Yexin Z, Huqiang Q, Fengjie N, Lili H, Xiaoning G, Zhensheng K, Qingmei H (2011) Investigation of Sclerotinia stem rot in Shaanxi Province. Plant Prot 2:025

    Google Scholar 

  • Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci 107(18):8387–8392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu X, Li B, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D (2013) Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc Natl Acad Sci 110(4):1452–1457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y (2004) Biocontrol of Sclerotinia stem rot of canola by bacterial antagonists and study of biocontrol mechanisms involved University of Manitoba, Manitoba, Canada

  • Zhang Y, Fernando W (2004a) Biological control of Sclerotinia sclerotiorum infection in canola by Bacillus sp. Phytopathology 93:94

    Google Scholar 

  • Zhang Y, Fernando W (2004b) Presence of biosynthetic genes for phenazine-1-carboxylic acid and 2, 4-diacetylphloroglucinol and pyrrolnitrin in Pseudomonas chlororaphis strain PA-23. Can J Plant Pathol 26:430–431

    Article  Google Scholar 

  • Zhang JX, Xue AG (2010) Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathol 59(2):382–391

    Article  Google Scholar 

  • Zhang Y, Daayf F, Fernando WGD (2004) Induced resistance against Sclerotinia in canola mediated by bacterial biocontrol agents In: International Joint Workshop on PR-Proteins and Induced Resistance, Copenhagen, Denmark 8–9

  • Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106(4):759–764

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Mostofa Kamal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, M.M., Savocchia, S., Lindbeck, K.D. et al. Biology and biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary in oilseed Brassicas. Australasian Plant Pathol. 45, 1–14 (2016). https://doi.org/10.1007/s13313-015-0391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-015-0391-2

Keywords

Navigation