An incremental algorithm for updating betweenness centrality and k-betweenness centrality and its performance on realistic dynamic social network data

  • Miray Kas
  • Kathleen M. Carley
  • L. Richard Carley
Original Article

DOI: 10.1007/s13278-014-0235-z

Cite this article as:
Kas, M., Carley, K.M. & Carley, L.R. Soc. Netw. Anal. Min. (2014) 4: 235. doi:10.1007/s13278-014-0235-z

Abstract

The increasing availability of dynamically changing digital data that can be used for extracting social networks over time has led to an upsurge of interest in the analysis of dynamic social networks. One key aspect of dynamic social network analysis is finding the central nodes in a network. However, dynamic calculation of centrality values for rapidly changing networks can be computationally expensive, with the result that data are frequently aggregated over many time periods and only intermittently analyzed for centrality measures. This paper presents an incremental betweenness centrality algorithm that efficiently updates betweenness centralities or k-betweenness centralities of nodes in dynamic social networks by avoiding re-computations through the efficient storage of information from earlier computations. In this paper, we evaluate the performance of the proposed algorithms for incremental betweenness centrality and k-betweenness centrality on both synthetic social network data sets and on several real-world social network data sets. The presented incremental algorithm can achieve substantial performance speedup (3–4 orders of magnitude faster for some data sets) when compared to the state of the art. And, incremental k-betweenness centrality, which is a good predictor of betweenness centrality, can be carried out on social network data sets with millions of nodes.

Keywords

Betweenness centrality k-Betweenness centrality Incremental algorithms Dynamic network analysis All-pairs shortest paths 

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Miray Kas
    • 1
    • 2
  • Kathleen M. Carley
    • 2
  • L. Richard Carley
    • 2
  1. 1.Google Inc.Menlo ParkUSA
  2. 2.Center for Computational Analysis of Social and Organizational Systems (CASOS)Carnegie Mellon UniversityPittsburghUSA