Skip to main content

Advertisement

Log in

Transcriptome sequencing of HER2-positive breast cancer stem cells identifies potential prognostic marker

  • Original Article
  • Published:
Tumor Biology

Abstract

In cancer stem cell theory, breast cancer stem cells (BCSCs) are postulated to be the root cause of recurrence and metastasis in breast cancer. Discovery of new biomarkers and development of BCSC-targeted therapy are practical issues that urgently need to be addressed in the clinic. However, few breast cancer stem cell targets are known. Given that there are few BCSCs, performing transcriptome sequencing on them thus far has not been possible. With the emergence of single-cell sequencing technology, we have now undertaken such a study. We prepared single-cell suspensions, which were sorted using flow cytometry from breast tumor tissue and adjacent normal breast tissue from two HER2-positive patients. We obtained BCSCs, breast cancer cells, mammary cells, and CD44+ mammary cells. Transcriptome sequencing was then performed on these four cell types. Using bioinformatics, we identified 404 differentially expressed BCSC genes from the HER2-positive tumors and preliminary explored transcriptome characteristics of BCSCs. Finally, by querying a public database, we found that CA12 was a novel prognostic biomarker in HER2-positive breast cancer, which also had prognostic value in all breast cancer types. In conclusion, our results suggest that CA12 may be associated with BCSCs, especially HER2-positive BCSCs, and is a potential novel therapeutic target and biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Ajani JA, Song S, Hochster HS, Steinberg IB. Cancer stem cells: the promise and the potential. Semin Oncol. 2015;42 Suppl 1:S3–17.

    Article  CAS  PubMed  Google Scholar 

  3. Iqbal J, Chong PY, Tan PH. Breast cancer stem cells: an update. J Clin Pathol. 2013;66:485–90.

    Article  CAS  PubMed  Google Scholar 

  4. Krishnan P, Ghosh S, Wang B, Li D, Narasimhan A, Berendt R, et al. Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer. BMC Genomics. 2015;16:735.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell. 2012;149:1284–97.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.

    Article  CAS  PubMed  Google Scholar 

  8. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8:R59.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9:16–32.

    Article  CAS  Google Scholar 

  10. Oak PS, Kopp F, Thakur C, Ellwart JW, Rapp UR, Ullrich A, et al. Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2-positive cancer cells and cancer stem cells. Int J Cancer. 2012;131:2808–19.

    Article  CAS  PubMed  Google Scholar 

  11. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526:131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–578.

  13. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  PubMed  Google Scholar 

  14. Muhammad E, Leventhal N, Parvari G, Hanukoglu A, Hanukoglu I, Chalifa-Caspi V, et al. Autosomal recessive hyponatremia due to isolated salt wasting in sweat associated with a mutation in the active site of Carbonic Anhydrase 12. Hum Genet. 2011;129:397–405.

    Article  CAS  PubMed  Google Scholar 

  15. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.

    Article  CAS  PubMed  Google Scholar 

  16. Bhat MA, Al-Dhfyan A, Naglah AM, Khan AA, Al-Omar MA. Lead optimization of 2-Cyclohexyl-N-[(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides for targeting the HER-2 overexpressed breast cancer cell line SKBr-3. Molecules. 2015;20:18246–63.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou M, Hou Y, Yang G, Zhang H, Tu G, Du YE, et al. LncRNA-Hh strengthen cancer stem cells generation in twist-positive breast cancer via activation of hedgehog signaling pathway. Stem Cells. 2016;34:55–66.

    Article  CAS  PubMed  Google Scholar 

  18. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11:259–73.

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi M, Matsumoto T, Ryuge S, Yanagita K, Nagashio R, Kawakami Y, et al. CAXII Is a sero-diagnostic marker for lung cancer. PLoS One. 2012;7:e33952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chien MH, Ying TH, Hsieh YH, Lin CH, Shih CH, Wei LH, et al. Tumor-associated carbonic anhydrase XII is linked to the growth of primary oral squamous cell carcinoma and its poor prognosis. Oral Oncol. 2012;48:417–23.

    Article  CAS  PubMed  Google Scholar 

  21. Yoo CW, Nam BH, Kim JY, Shin HJ, Lim H, Lee S, et al. Carbonic anhydrase XII expression is associated with histologic grade of cervical cancer and superior radiotherapy outcome. Radiat Oncol. 2010;5:101.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eom KY, Jang MH, Park SY, Kang EY, Kim SW, Kim JH, et al. The expression of carbonic anhydrase (CA) IX/XII and lymph node metastasis in early breast cancer. Cancer Res Treat. 2015.

Download references

Acknowledgments

The study was supported by a research grant from the Health and Family Planning Commission Research Project of Heilongjiang Province(2016-082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Pang.

Ethics declarations

Ethics

The Research Ethics Committee of Harbin Medical University Cancer Hospital approved this study. Written informed consent was obtained from all patients, and specimens were handled and made anonymous according to ethical and legal standards.

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLSX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, B., Zhang, Xy., Zhou, Jp. et al. Transcriptome sequencing of HER2-positive breast cancer stem cells identifies potential prognostic marker. Tumor Biol. 37, 14757–14764 (2016). https://doi.org/10.1007/s13277-016-5351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5351-0

Keywords

Navigation