Skip to main content

Advertisement

Log in

JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Lung cancer is the most common cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for 80 to 85 % of all lung cancer. Although the standard treatment regimen has been established, long-term survival for NSCLC patients is still generally poor. The histone demethylase Jumonji domain containing 1A (JMJD1A) has been proposed as an oncogene in several types of human cancer, but its clinical significance and functional roles in NSCLC remain largely unclear. In the present study, JMJD1A was frequently upregulated in NSCLC compared with para-carcinoma tissues. JMJD1A knockdown significantly inhibited NSCLC cell growth, migration, and invasion in vitro and tumorigenesis in vivo. Further experiments demonstrated that JMJD1A knockdown could decrease the expression of EZH2, which has been shown to play a crucial role in the carcinogenesis of NSCLC and, in turn, increase the expression of anti-tumor microRNA let-7c. Also, let-7c directly targeted the 3′-untranslated regions of JMJD1A and EZH2. Taken together, JMJD1A could promote NSCLC tumorigenesis. JMJD1A/EZH2/let-7c constituted a feedback loop and might represent a promising therapeutic target for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  3. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog lsd1. Cell. 2004;119:941–53.

    Article  CAS  PubMed  Google Scholar 

  4. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439:811–6.

    Article  CAS  PubMed  Google Scholar 

  5. Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature. 2009;458:757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 2007;450:119–23.

    Article  CAS  PubMed  Google Scholar 

  7. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 2006;125:483–95.

    Article  CAS  PubMed  Google Scholar 

  8. Suikki HE, Kujala PM, Tammela TL, van Weerden WM, Vessella RL, Visakorpi T. Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate. 2010;70:889–98.

    CAS  PubMed  Google Scholar 

  9. Guo X, Shi M, Sun L, Wang Y, Gui Y, Cai Z, et al. The expression of histone demethylase JMJD1A in renal cell carcinoma. Neoplasma. 2011;58:153–7.

    Article  CAS  PubMed  Google Scholar 

  10. Cho HS, Toyokawa G, Daigo Y, Hayami S, Masuda K, Ikawa N, et al. The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Cancer. 2012;131:E179–189.

    Article  CAS  PubMed  Google Scholar 

  11. Yamada D, Kobayashi S, Yamamoto H, Tomimaru Y, Noda T, Uemura M, et al. Role of the hypoxia-related gene, JMJD1A, in hepatocellular carcinoma: clinical impact on recurrence after hepatic resection. Ann Surg Oncol. 2012;19 Suppl 3:S355–364.

    Article  PubMed  Google Scholar 

  12. Uemura M, Yamamoto H, Takemasa I, Mimori K, Hemmi H, Mizushima T, et al. Jumonji domain containing 1A is a novel prognostic marker for colorectal cancer: in vivo identification from hypoxic tumor cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16:4636–46.

    Article  CAS  Google Scholar 

  13. Tee AE, Ling D, Nelson C, Atmadibrata B, Dinger ME, Xu N, Mizukami T, Liu PY, Liu B, Cheung B, Pasquier E, Haber M, Norris MD, Suzuki T, Marshall GM, Liu T. The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget. 2014.

  14. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y, Hussain A, Qi J. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene. 2015.

  15. Hirsch FR, Varella-Garcia M, Bunn Jr PA, Di Maria MV, Veve R, Bremmes RM, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21:3798–807.

    Article  CAS  Google Scholar 

  16. Marshall GM, Liu PY, Gherardi S, Scarlett CJ, Bedalov A, Xu N, et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet. 2011;7:e1002135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fussbroich B, Wagener N, Macher-Goeppinger S, Benner A, Falth M, Sultmann H, et al. EZH2 depletion blocks the proliferation of colon cancer cells. PLoS One. 2011;6:e21651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu T, Tee AE, Porro A, Smith SA, Dwarte T, Liu PY, et al. Activation of tissue transglutaminase transcription by histone deacetylase inhibition as a therapeutic approach for Myc oncogenesis. Proc Natl Acad Sci U S A. 2007;104:18682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma X, Li C, Sun L, Huang D, Li T, He X, et al. Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun. 2014;5:5212.

    Article  CAS  PubMed  Google Scholar 

  20. Steele JC, Torr EE, Noakes KL, Kalk E, Moss PA, Reynolds GM, et al. The polycomb group proteins, BMI-1 and EZH2, are tumour-associated antigens. Br J Cancer. 2006;95:1202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, et al. Lin28a and lin28b inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147:1066–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, et al. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut. 2013;62:1536–46.

    Article  CAS  PubMed  Google Scholar 

  23. Sun D, Layer R, Mueller AC, Cichewicz MA, Negishi M, Paschal BM, et al. Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene. 2014;33:1448–57.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Liu H, Liu W, Liu Y, Xu J. Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-κB pathway. Cell Death Differ. 2015;22:287–97.

    Article  CAS  PubMed  Google Scholar 

  25. Tzatsos A, Paskaleva P, Lymperi S, Contino G, Stoykova S, Chen Z, et al. Lysine-specific demethylase 2b (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. J Biol Chem. 2011;286:33061–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L, et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One. 2012;7:e33729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wade MA, Jones D, Wilson L, Stockley J, Coffey K, Robson CN, et al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res. 2015;43:196–207.

    Article  CAS  PubMed  Google Scholar 

  28. Parrish JK, Sechler M, Winn RA, Jedlicka P. The histone demethylase KDM3A is a microRNA-22-regulated tumor promoter in Ewing sarcoma. Oncogene. 2015;34:257–62.

    Article  CAS  PubMed  Google Scholar 

  29. Osawa T, Tsuchida R, Muramatsu M, Shimamura T, Wang F, Suehiro J, et al. Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages. Cancer Res. 2013;73:3019–28.

    Article  CAS  PubMed  Google Scholar 

  30. Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol. 2010;30:344–53.

    Article  CAS  PubMed  Google Scholar 

  31. Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 2012;56:622–31.

    Article  CAS  PubMed  Google Scholar 

  32. Fujii S, Tokita K, Wada N, Ito K, Yamauchi C, Ito Y, et al. MEK-ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene. 2011;30:4118–28.

    Article  CAS  PubMed  Google Scholar 

  33. Lu C, Han HD, Mangala LS, Ali-Fehmi R, Newton CS, Ozbun L, et al. Regulation of tumor angiogenesis by EZH2. Cancer Cell. 2010;18:185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Behrens C, Solis LM, Lin H, Yuan P, Tang X, Kadara H, et al. Wistuba, II: EZH2 protein expression associates with the early pathogenesis, tumor progression, and prognosis of non-small cell lung carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19:6556–65.

    Article  CAS  Google Scholar 

  35. Liu L, Xu Z, Zhong L, Wang H, Jiang S, Long Q, et al. Prognostic value of EZH2 expression and activity in renal cell carcinoma: a prospective study. PLoS One. 2013;8:e81484.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Knudsen ES, Dervishaj O, Kleer CG, Pajak T, Schwartz GF, Witkiewicz AK. EZH2 and aldh1 expression in ductal carcinoma in situ: complex association with recurrence and progression to invasive breast cancer. Cell Cycle. 2013;12:2042–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Zhao H, Lv L, Bao L, Wang X, Han S. Prognostic significance of EZH2 expression in non-small cell lung cancer: a meta-analysis. Sci Rep. 2016;6:19239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Z, Xu L, Tang N, Xu Y, Ye X, Shen S, et al. The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2. FEBS Lett. 2014;588:3000–7.

    Article  CAS  PubMed  Google Scholar 

  39. Xu C, Hou Z, Zhan P, Zhao W, Chang C, Zou J, et al. EZH2 regulates cancer cell migration through repressing TIMP-3 in non-small cell lung cancer. Med Oncol. 2013;30:713.

    Article  PubMed  Google Scholar 

  40. Sun M, Liu XH, Lu KH, Nie FQ, Xia R, Kong R, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nadiminty N, Tummala R, Lou W, Zhu Y, Shi XB, Zou JX, et al. MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One. 2012;7:e32832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han HB, Gu J, Zuo HJ, Chen ZG, Zhao W, Li M, et al. Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. J Pathol. 2012;226:544–55.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu XM, Wu LJ, Xu J, Yang R, Wu FS. Let-7c microRNA expression and clinical significance in hepatocellular carcinoma. J Int Med Res. 2011;39:2323–9.

    Article  CAS  PubMed  Google Scholar 

  44. Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M. Clinical significance of high mobility group a2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:2334–40.

    Article  CAS  Google Scholar 

  45. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–6.

    Article  CAS  PubMed  Google Scholar 

  46. Navarro A, Marrades RM, Vinolas N, Quera A, Agusti C, Huerta A, et al. MicroRNAs expressed during lung cancer development are expressed in human pseudoglandular lung embryogenesis. Oncology. 2009;76:162–9.

    Article  CAS  PubMed  Google Scholar 

  47. Nagayama K, Kohno T, Sato M, Arai Y, Minna JD, Yokota J. Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer. 2007;46:1000–10.

    Article  CAS  PubMed  Google Scholar 

  48. Wang PY, Sun YX, Zhang S, Pang M, Zhang HH, Gao SY, et al. Let-7c inhibits A549 cell proliferation through oncogenic TRIB2 related factors. FEBS Lett. 2013;587:2675–81.

    Article  CAS  PubMed  Google Scholar 

  49. Zhan M, Qu Q, Wang G, Liu YZ, Tan SL, Lou XY, et al. Let-7c inhibits NSCLC cell proliferation by targeting HOXA1. Asian Pac J Cancer Prev. 2013;14:387–92.

    Article  PubMed  Google Scholar 

  50. Zhao B, Han H, Chen J, Zhang Z, Li S, Fang F, et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett. 2014;342:43–51.

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Zhao Q, Deng K, Guo X, Xia J. Lin28: an emerging important oncogene connecting several aspects of cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2016.

  52. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou J, Ng SB, Chng WJ. Lin28/lin28b: an emerging oncogenic driver in cancer stem cells. Int J Biochem Cell Biol. 2013;45:973–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 863 Project (No. 2012AA02A517), Medical Scientific Research Foundation of Guangdong Province (No. B2014362), and National Natural Science Foundation of China (No. 81260337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghao Zhou.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, M., Wen, F., Liu, L. et al. JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells. Tumor Biol. 37, 11237–11247 (2016). https://doi.org/10.1007/s13277-016-4999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4999-9

Keywords

Navigation