Skip to main content

Advertisement

Log in

The attenuation of epithelial to mesenchymal transition and induction of anoikis by gigantol in human lung cancer H460 cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Lung cancer has been the major cause of death within patients due to the high metastatic rate. One of the most essential processes of metastasis is the ability of cancer cells to resist the programmed cell death in a detached condition called anoikis. The discoveries of new natural compound that is able to sensitize anoikis in cancer cells have garnered the most interest in cancer pharmaceutical science. Gigantol, a bibenzyl compound extracted from Dendrobium draconis, has been a promising natural derived compound for cancer therapy due to several cytotoxic effects in cancer cells. This study has demonstrated for the first time that gigantol significantly decreases lung cancer cells’ viability in a detached condition through anoikis and anchorage-independent assays. Western blotting analysis reveals that gigantol greatly decreases epithelial to mesenchymal transition (EMT) markers including N-cadherin, vimentin, and Slug leading to a significant suppression of protein kinase B (AKT), extracellular signal-regulated kinase (ERK), and caveolin-1 (cav-1) survival pathways during the detached condition. Therefore, gigantol could be a potential cancer therapeutic compound suggesting for further development for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EMT:

Epithelial to mesenchymal transition

AKT:

Protein kinase B

ERK:

Extracellular signal-regulated kinase

cav-1:

Caveolin-1

ECM:

Extracellular matrix

References

  1. Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol. 2008;76(11):1352–64.

    Article  CAS  PubMed  Google Scholar 

  2. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. BBA Mol Cell Res. 2013;1833(12):3481–98.

    CAS  Google Scholar 

  3. Guadamillas MC, Cerezo A, del Pozo MA. Overcoming anoikis—pathways to anchorage-independent growth in cancer. J Cell Sci. 2011;124(19):3189–97.

    Article  CAS  PubMed  Google Scholar 

  4. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–19.

    Article  CAS  PubMed  Google Scholar 

  5. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 2008;16(1):3–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.

    Article  PubMed  Google Scholar 

  7. Sabbah M, Emami S, Redeuilh G, Julien S, Prévost G, Zimber A, et al. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat. 2008;11(4–5):123–51.

    Article  CAS  PubMed  Google Scholar 

  8. Shi Y, Wu H, Zhang M, Ding L, Meng F, Fan X. Expression of the epithelial-mesenchymal transition-related proteins and their clinical significance in lung adenocarcinoma. Diagn Pathol. 2013;8(1):1–1.

    Google Scholar 

  9. Geiger TR, Peeper DS. Metastasis mechanisms. BBA Rev Cancer. 2009;1796(2):293–308.

    CAS  Google Scholar 

  10. Voulgari A, Pintzas A. Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. BBA Rev Cancer. 2009;1796(2):75–90.

    CAS  Google Scholar 

  11. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Floor SL, Dumont JE, Maenhaut C, Raspe E. Hallmarks of cancer: of all cancer cells, all the time? Trends Mol Med. 2012;18(9):509–15.

    Article  CAS  PubMed  Google Scholar 

  13. Powan P, Chanvorachote P. Nitric oxide mediates cell aggregation and mesenchymal to epithelial transition in anoikis-resistant lung cancer cells. Mol Cell Biochem. 2014;393(1–2):237–45.

    Article  CAS  PubMed  Google Scholar 

  14. Chanvorachote P, Pongrakhananon V, Halim H. Caveolin-1 regulates metastatic behaviors of anoikis resistant lung cancer cells. Mol Cell Biochem. 2014;399(1–2):291–302.

    PubMed  Google Scholar 

  15. Halim H, Luanpitpong S, Chanvorachote P. Acquisition of anoikis resistance up-regulates caveolin-1 expression in human non-small cell lung cancer cells. Anticancer Res. 2012;32(5):1649–58.

    CAS  PubMed  Google Scholar 

  16. Ravid D, Maor S, Werner H, Liscovitch M. Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Adv Enzyme Regul. 2006;46(1):163–75.

    Article  CAS  PubMed  Google Scholar 

  17. Ho C-C, Huang P-H, Huang H-Y, Chen Y-H, Yang P-C, Hsu S-M. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol. 2010;161(5):1647–56.

    Article  Google Scholar 

  18. Chunhacha P, Chanvorachote P. Roles of caveolin-1 on anoikis resistance in non small cell lung cancer. Int J Physiol. 2011;4(3):149–55.

    Google Scholar 

  19. Chanvorachote P. Epithelial-mesenchymal transition mediates anoikis resistance and enhances invasion in pleural effusion-derived human lung cancer cells. Oncol Lett. 2013;5:1043–47.

    PubMed  PubMed Central  Google Scholar 

  20. Klongkumnuankarn P, Busaranon K, Chanvorachote P, Sritularak B, Jongbunprasert V, Likhitwitayawuid K. Cytotoxic and antimigratory activities of phenolic compounds from dendrobium brymerianum. J Evid Based Complementary Altern Med. 2015;1–9.

  21. Charoenrungruang S, Chanvorachote P, Sritularak B. Gigantol-induced apoptosis in lung cancer cell through mitochondrial-dependent pathway. TJPS. 2014;38:67–73.

    Google Scholar 

  22. Charoenrungruang S, Chanvorachote P, Sritularak B, Pongrakhananon V. Gigantol, a bibenzyl from Dendrobium draconis, inhibits the migratory behavior of non-small cell lung cancer cells. J Nat Prod. 2014;77(6):1359–66.

    Article  CAS  PubMed  Google Scholar 

  23. Sritularak B, Anuwat M, Likhitwitayawuid K. A new phenanthrenequinone from Dendrobium draconis. J Asian Nat Prod Res. 2011;13(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  24. Bailey KM, Liu J. Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J Biol Chem. 2008;283(20):13714–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ha G-H, Park J-S, Breuer E-KY. TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett. 2013;332(1):63–73.

    Article  CAS  PubMed  Google Scholar 

  26. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6(6):449–58.

    Article  CAS  PubMed  Google Scholar 

  27. Weigelt B, Peterse JL, van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602.

    Article  CAS  PubMed  Google Scholar 

  28. Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol. 2008;19(3):294–308.

    Article  CAS  PubMed  Google Scholar 

  29. Larue L, Bellacosa A. Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24(50):7443–54.

    Article  CAS  PubMed  Google Scholar 

  30. Winitthana T, Lawanprasert S, Chanvorachote P. Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells. PLoS ONE. 2014;9(10), e110851.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  32. Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat. 2012;44(3):151–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci. 2013;126(1):21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Irie HY. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol. 2005;171(6):1023–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, et al. Akt/PKB regulates actin organization and cell motility via girdin/APE. Dev Cell. 2005;9(3):389–402.

    Article  CAS  PubMed  Google Scholar 

  36. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  37. Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58(11):621–31.

    Article  CAS  PubMed  Google Scholar 

  38. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. BBA Mol Cell Res. 2007;1773(8):1263–84.

    CAS  Google Scholar 

  39. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2012;9–18.

  40. Luanpitpong S, Talbott SJ, Rojanasakul Y, Nimmanit U, Pongrakhananon V, Wang L, Chanvorachote P. Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem. 2010;38832–40.

  41. Scheel C, Weinberg RA. Cancer stem cells and epithelial–mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22(5–6):396–403.

    Article  CAS  PubMed  Google Scholar 

  42. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine. 2012;7(4):597–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lobo NA, Shimono Y, Qian D, Clarke MF. The Biology of Cancer Stem Cells. Annu Rev Cell Dev Biol. 2007;23(1):675–99.

    Article  CAS  PubMed  Google Scholar 

  45. Yongsanguanchai N, Pongrakhananon V, Mutirangura A, Rojanasakul Y, Chanvorachote P. Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. Am J Physiol. 2015;308(2):89–100.

    Article  Google Scholar 

  46. Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Nat Commun. 2013;34(6):732–40.

    CAS  Google Scholar 

  47. Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells—therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013;3(2):65–75.

    Article  Google Scholar 

  48. Jung H-Y, Yang J. Unraveling the TWIST between EMT and cancer stemness. Stem Cells. 2015;16(1):1–2.

    Article  CAS  Google Scholar 

  49. Schmidt JM, Panzilius E, Bartsch HS, Irmler M, Beckers J, Kari V, et al. Stem-cell-like properties and epithelial plasticity arise as stable traits after transient twist1 activation. Cell Rep. 2015;10(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  50. Rajendran G, Dutta D, Hong J, Paul A, Saha B, Mahato B, et al. Inhibition of protein kinase C signaling maintains rat embryonic stem cell pluripotency. J Biol Chem. 2013;288(34):24351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhummaphan N, Chanvorachote P. Gigantol suppresses cancer stem cell-like phenotypes in lung cancer cells. J Evid Based Complement Altern Med. 2015;2015(3):1–10.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Boonchoo Sritularak for gigantol preparation. This work was supported by the 100th Anniversary Chulalongkorn University fund for doctoral scholarship and the Ratchadapiseksomphot Endowment Fund (2013), Chulalongkorn University (CU-56-384-HR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varisa Pongrakhananon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unahabhokha, T., Chanvorachote, P. & Pongrakhananon, V. The attenuation of epithelial to mesenchymal transition and induction of anoikis by gigantol in human lung cancer H460 cells. Tumor Biol. 37, 8633–8641 (2016). https://doi.org/10.1007/s13277-015-4717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4717-z

Keywords

Navigation