Skip to main content

Advertisement

Log in

Retinoic acid morpholine amide (RAMA) inhibits expression of Fas ligand through EP1 receptor in colon cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Among the members of tumour necrosis factor family Fas ligand on binding to its receptor strongly induces apoptosis of tumour-infiltrating lymphocytes (TIL). Thus, FasL acts as an inhibitor of anti-tumour immune response. The present study demonstrates that retinoic acid morpholine amide (RAMA) significantly suppresses FasL expression in colon cancer cells in a dose- and time-dependent manner. The suppression of FasL mRNA and proteins was significant at a concentration of 30 μM after 48 h in CLT85 and HT26 colon cancer cells. There was around 2.6- and 3.2-fold decrease in FasL mRNA after incubation with 30 μM of RAMA in CLT85 cells and HT26 cells, respectively. The results from Western blot showed a decrease in FasL mRNA and protein expression in both CLT85 and HT26 cells after suppression of cyclooxygenase (COX)-2 and COX-1 by RNAi. However, when COX-2-specific silencer RNA (siCOX-2)- and siCOX-1-treated CLT85 and HT26 cells were exposed to RAMA, inhibition of FasL expression was further suppressed. The siCOX-2-treated CLT85 and HT26 cells on exposure to RAMA showed ∼87 and ∼54 % reduction in FasL mRNA, respectively. Co-culture of Jurkat T cells with RAMA-treated HT26 and CLT85 cells decreased the viability of Jurkat T cells by only 2 and 4.3 %, respectively, compared to 19.5 and 37.3 % in control HT26 and CLT85 cells. The results from real-time reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting showed that suppression of EP1 prevented RAMA-induced FasL suppression in CLT85 cells at both the mRNA and protein levels. Thus, RAMA can be a potent therapeutic agent for the treatment of colon tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  PubMed  Google Scholar 

  2. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    Article  PubMed  Google Scholar 

  3. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  4. Boman BM, Huang E. Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J ClinOncol. 2008;26:2828–38.

    Article  Google Scholar 

  5. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med. 1996;184:1075–82.

    Article  PubMed  Google Scholar 

  6. Okada K, Komuta K, Hashimoto S, Matsuzaki S, Kanematsu T, Koji T. Frequency of apoptosis of tumor-infiltrating lymphocytes induced by Fas counterattack in human colorectal carcinoma and its correlation with prognosis. Clin Cancer Res. 2000;6:3560–4.

    CAS  PubMed  Google Scholar 

  7. Bennett MW, O’Connell J, Houston A, Kelly J, O’Sullivan GC, Collins JK, et al. Fas ligand upregulation is an early event in colonic carcinogenesis. J ClinPathol. 2001;54:598–604.

    CAS  Google Scholar 

  8. Belluco C, Esposito G, Bertorelle R, Alaggio R, Giacomelli L, Bianchi LC, et al. Fas ligand is up-regulated during the colorectal adenoma–carcinoma sequence. Eur J SurgOncol. 2002;28:120–5.

    Article  CAS  Google Scholar 

  9. Lambert C, Landau AM, Desbarats J. Fas—beyond death: a regenerative role for Fas in the nervous system. Apoptosis. 2003;8:551–62.

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Cai X, Fan X, Moquin B, Stoicov C, Houghton J. Fas Ag–FasL coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol. 2008;294:G263–75.

    Article  CAS  PubMed  Google Scholar 

  11. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 2004;22:22.

    Google Scholar 

  12. Ryan AE, Shanahan F, O’Connell J, Houston AM. Addressing the ‘Fas counterattack’ controversy: blocking Fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res. 2005;65:9817–23.

    Article  CAS  PubMed  Google Scholar 

  13. Williams CS, DuBois RN. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol. 1996;270:G393–400.

    CAS  PubMed  Google Scholar 

  14. Cao Y, Prescott SM. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol. 2002;190:279–86.

    Article  CAS  PubMed  Google Scholar 

  15. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med. 1993;122:518–23.

    CAS  PubMed  Google Scholar 

  16. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.

    Article  CAS  PubMed  Google Scholar 

  17. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, et al. Expression of cyclooxygenase-1 and −2 in human colorectal cancer. Cancer Res. 1995;55:3785–9.

    CAS  PubMed  Google Scholar 

  18. Moon RC, McCormick DL, Mehta RG. Inhibition of carcinogenesis by retinoids. Cancer Res. 1983;43:2469.

    CAS  Google Scholar 

  19. Defer GL, Adle-Biassette H, Ricolfi F, Martin L, Authier FJ, Chomienne C, et al. All-trans retinoic acid in relapsing malignant gliomas: clinical and radiological stabilization associated with the appearance of intratumoral calcifications. J Neurooncol. 1997;34:169–77.

    Article  CAS  PubMed  Google Scholar 

  20. Huang EJ, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, et al. Use of all-trans retinoic acid in the treatment of acute promyelocyticleukemia. Blood. 1988;72:567–72.

    CAS  PubMed  Google Scholar 

  21. Lehman PA, Slattery JT, Franz TJ. Percutaneous absorption of retinoids: influence of vehicle, light exposure, and dose. J Invest Dermatol. 1988;91:56–61.

    Article  CAS  PubMed  Google Scholar 

  22. Szuts EZ, Harosi FI. Solubility of retinoids in water. Arch Biochem Biophys. 1991;287:297–304.

    Article  CAS  PubMed  Google Scholar 

  23. Jeong YI, Kim SH, Jung TY, Kim IY, et al. Polyion complex micelles composed of all-trans retinoic acid and poly(ethylene glycol)-grafted chitosan. J Pharm Sci. 2006;95:2348–60.

    Article  CAS  PubMed  Google Scholar 

  24. Chung KD, Jeong Y-I, Chung CW, Kim DH, Kang DH. Anti-tumor activity of all-trans retinoic acid-incorporated glycol chitosan nanoparticles against HuCC-T1 human cholangiocarcinoma cells. Int J Pharmaceutics. 2012;422:454–61.

    Article  CAS  Google Scholar 

  25. Crocetti E, Trama A, Stiller C, Caldarella A, et al. Epidemiology of glial and non-glial brain tumors in Europe. Eur J Cancer. 2012;48:1532–42.

    Article  PubMed  Google Scholar 

  26. Tanaka S, Louis DN, Curry WT, Batchelor TT, Dietrich J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat Rev ClinOncol. 2013;10:14–26.

    Article  CAS  Google Scholar 

  27. Stummer W, Kamp MA. The importance of surgical resection in malignant glioma. Curr Opin Neurol. 2009;22:645–9.

    Article  PubMed  Google Scholar 

  28. O’Callaghan G, Kelly J, Shanahan F, Houston A. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. British Journal of Cancer. 2008;99:502–12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Connell J, Houston A, Bennett MW, O’Sullivan GC, Shanahan F. Immune privilege or inflammation? Insights into the Fas ligand enigma. Nat Med. 2001;7:271–4.

    Article  PubMed  Google Scholar 

  30. Whiteside TL. The role of death receptor ligands in shaping tumor microenvironment. Immunol Invest. 2007;36:25–46.

    Article  CAS  PubMed  Google Scholar 

  31. Mann B, Gratchev A, Bohm C, Hanski ML, Foss HD, Demel G, et al. FasL is more frequently expressed in liver metastases of colorectal cancer than in matched primary carcinomas. Br J Cancer. 1999;79:1262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Younes M, Schwartz MR, Ertan A, Finnie D, Younes A. Fas ligand expression in esophageal carcinomas and their lymph node metastases. Cancer. 2000;88:524–8.

    Article  CAS  PubMed  Google Scholar 

  33. Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, et al. The CD95 receptor: apoptosis revisited. Cell. 2007;129:447–50.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, et al. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res. 1999;59:5093–6.

    CAS  PubMed  Google Scholar 

  35. Kawamori T, Kitamura T, Watanabe K, Uchiya N, Maruyama T, Narumiya S, et al. Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. Carcinogenesis. 2005;26:353–7.

    Article  CAS  PubMed  Google Scholar 

  36. Shoji Y, Takahashi M, Kitamura T, Watanabe K, Kawamori T, Maruyama T, et al. Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut. 2004;53:1151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyata Y, Kanda S, Maruta S, Matsuo T, Sakai H, Hayashi T, et al. Relationship between prostaglandin E2 receptors and clinicopathologic features in human prostate cancer tissue. Urology. 2006;68:1360–5.

    Article  PubMed  Google Scholar 

  38. Rask K, Zhu Y, Wang W, Hedin L, Sundfeldt K. Ovarian epithelial cancer: a role for PGE2-synthesis and signalling in malignant transformation and progression. Mol Cancer. 2006;5:62.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Osaki M, Kase S, Kodani I, Watanabe M, Adachi H, Ito H. Expression of Fas and Fas ligand in human gastric adenomas and intestinal-type carcinomas: correlation with proliferation and apoptosis. Gastric Cancer. 2001;4:198–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Financial disclosure

This work was supported by Project (No: 2013DFA31510) and China-Japan Friendship Hospital Youth Science and Technology Excellence Project (No. 2015-QNYC-B-02).

Conflicts of interest

None

Authors’ contributions

Shao-Xuan Chen, Li Yao and Shi-Yu Du designed the study. Yun-Ting Wang, Hong-Chuan Zhao and Yan-Li Zhang wrote the manuscript. Shi-Yu Du carried out the cell culture and Western blot. All authors approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yao.

Additional information

Shao-Xuan Chen and Shi-Yu Du contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SX., Du, SY., Wang, YT. et al. Retinoic acid morpholine amide (RAMA) inhibits expression of Fas ligand through EP1 receptor in colon cancer cells. Tumor Biol. 37, 323–329 (2016). https://doi.org/10.1007/s13277-015-3798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3798-z

Keywords

Navigation