Skip to main content

Advertisement

Log in

Radioimmunotherapy—a potential novel tool for pancreatic cancer therapy?

Tumor Biology

Abstract

Pancreatic cancer is one of the most severe cancers and is predicted to rise up to the number two cancer killer by 2030. The ineffective treatment options available and that the cancer is silent until very late in its course are the main reasons for the poor outcome of the disease. Surgery is the only curative option but only available for 10–15 % of the patients, but even then many relapse due to metastases. Many new treatments are under way, and one of the promising ones is radioimmunotherapy (RIT). This review includes clinical trials with RIT in pancreatic cancer as well as a review of adverse events observed during treatment of other solid tumors. Additionally, preclinical studies are reviewed with emphasis on effect, adverse events, the tumor targeting as well as isotope function. Four clinical trials with pancreatic cancer have been conducted with positive results, and one phase III trial is underway. The use of RIT in patients with solid tumors has proven to be well tolerated, and the adverse effects are almost exclusively hematological. Multiple targets and isotopes have been evaluated preclinically, alone, or in combination with existing drug options. Smaller tumors have in several studies completely regressed, while larger ones have stabilized or progressed more slowly. Pancreatic cancer is one of the solid tumors where RIT have reached the longest. The tumor heterogeneity will most likely leave room for more than one treatment option, and several aspiring therapies are under way. RIT may become part of multimodality tumor-directed therapy for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

Bi:

Bismuth

Bq:

Becquerel

CEA:

Carcinoembryonic antigen

ch*:

Chimeric

Ci:

Curie

DLT:

Dose-limiting toxicity

G-CSF:

Granulocyte-colony-stimulating factor

Gy:

Gray

HACA:

Human anti-chimeric antibodies

HAMA:

Human anti-mouse antibodies

HASA:

Human anti-sheep antibodies

hu*:

Humanized

In:

Indium

I:

Iodine

i.v:

Intravenous

Lu:

Lutetium

mAb:

Monoclonal antibody

MTD:

Maximum-tolerated dose

RIT:

Radioimmunotherapy

Y:

Yttrium

References

  1. Bergman O, Hont G, Johansson E. Bukspottkörtelcancer. In: Johansson E editor. Cancer i siffror 2013. Socialstyrelsen and Cancerfonden; 2013.

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    Article  CAS  PubMed  Google Scholar 

  3. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    Article  CAS  PubMed  Google Scholar 

  5. Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007;6:1186–97.

    Article  CAS  PubMed  Google Scholar 

  6. Linder S, Bostrom L, Nilsson B. Pancreatic cancer in Sweden 1980–2000: a population-based study of hospitalized patients concerning time trends in curative surgery and other interventional therapies. J Gastrointest Surg. 2006;10:672–8.

    Article  PubMed  Google Scholar 

  7. Shaib Y, Davila J, Naumann C, El-Serag H. The impact of curative intent surgery on the survival of pancreatic cancer patients: a U.S. population-based study. Am J Gastroenterol. 2007;102:1377–82.

    Article  PubMed  Google Scholar 

  8. Nordh S, Ansari D, Andersson R. Hent1 expression is predictive of gemcitabine outcome in pancreatic cancer: a systematic review. World J Gastroenterol. 2014;20:8482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oikonomopoulos GM, Syrigos KN, Skoura E, Saif MW. FOLFIRINOX: from the accord study to 2014. JOP. 2014;15:103–5.

    PubMed  Google Scholar 

  10. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  Google Scholar 

  11. DeNardo S, Knox S, Azinovic Gamo I. Tumor-targeted radioisotope therapy. In: Hoppe R, Phillips T, Roach M editors. Leibel and Phillips textbook of radiation oncology. Elsevier; 2010.

  12. Agency EM. Zevalin-ibritumomab tiuxetan.

  13. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed b-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.

    Article  CAS  PubMed  Google Scholar 

  14. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260–90.

    Article  CAS  PubMed  Google Scholar 

  15. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, et al. Ctcae v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13:176–81.

    Article  PubMed  Google Scholar 

  16. Shi C, Merchant N, Newsome G, Goldenberg DM, Gold DV. Differentiation of pancreatic ductal adenocarcinoma from chronic pancreatitis by pam4 immunohistochemistry. Arch Pathol Lab Med. 2014;138:220–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gold DV, Lew K, Maliniak R, Hernandez M, Cardillo T. Characterization of monoclonal antibody pam4 reactive with a pancreatic cancer mucin. Int J Cancer. 1994;57:204–10.

    Article  CAS  PubMed  Google Scholar 

  18. Alisauskus R, Wong GY, Gold DV. Initial studies of monoclonal antibody pam4 targeting to xenografted orthotopic pancreatic cancer. Cancer Res. 1995;55:5743s–8s.

    CAS  PubMed  Google Scholar 

  19. Cardillo TM, Ying Z, Gold DV. Therapeutic advantage of (90)yttrium- versus (131)iodine-labeled PAM4 antibody in experimental pancreatic cancer. Clin Cancer Res. 2001;7:3186–92.

    CAS  PubMed  Google Scholar 

  20. Sabbah EN, Kadouche J, Ellison D, Finucane C, Decaudin D, Mather SJ. In vitro and in vivo comparison of dtpa- and dota-conjugated antiferritin monoclonal antibody for imaging and therapy of pancreatic cancer. Nucl Med Biol. 2007;34:293–304.

    Article  CAS  PubMed  Google Scholar 

  21. Gold DV, Schutsky K, Modrak D, Cardillo TM. Low-dose radioimmunotherapy ((90)y-pam4) combined with gemcitabine for the treatment of experimental pancreatic cancer. Clin Cancer Res. 2003;9:3929S–37S.

    CAS  PubMed  Google Scholar 

  22. Gold DV, Modrak DE, Schutsky K, Cardillo TM. Combined 90yttrium-dota-labeled pam4 antibody radioimmunotherapy and gemcitabine radiosensitization for the treatment of a human pancreatic cancer xenograft. Int J Cancer. 2004;109:618–26.

    Article  CAS  PubMed  Google Scholar 

  23. Sharkey RM, Karacay H, Govindan SV, Goldenberg DM. Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol Cancer Ther. 2011;10:1072–81.

    Article  CAS  PubMed  Google Scholar 

  24. Gold DV, Goldenberg DM, Karacay H, Rossi EA, Chang C-H, Cardillo TM, et al. A novel bispecific, trivalent antibody construct for targeting pancreatic carcinoma. Cancer Res. 2008;68:4819–26.

    Article  CAS  PubMed  Google Scholar 

  25. Karacay H, Sharkey RM, Gold DV, Ragland DR, McBride WJ, Rossi EA, et al. Pretargeted radioimmunotherapy of pancreatic cancer xenografts: TF10-90Y-IMP-288 alone and combined with gemcitabine. J Nucl Med. 2009;50:2008–16.

    Article  PubMed  Google Scholar 

  26. Qu CF, Li Y, Song YJ, Rizvi SMA, Raja C, Zhang D, et al. Muc1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by (213)Bi-C595 radioimmunoconjugate. Br J Cancer. 2004;91:2086–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qu CF, Songl YJ, Rizvi SMA, Li Y, Smith R, Perkins AC, et al. In vivo and in vitro inhibition of pancreatic cancer growth by targeted alpha therapy using 213Bi-Chx.A-C595. Cancer Biol Ther. 2005;4:848–53.

    Article  CAS  PubMed  Google Scholar 

  28. Yamaguchi K, Enjoji M, Tsuneyoshi M. Pancreatoduodenal carcinoma: a clinicopathologic study of 304 patients and immunohistochemical observation for CEA and CA19-9. J Surg Oncol. 1991;47:148–54.

    Article  CAS  PubMed  Google Scholar 

  29. Osborne J, Harrison P, Butcher R, Ebsworth N, Tan K. Novel super-high affinity sheep monoclonal antibodies against CEA bind colon and lung adenocarcinoma. Hybridoma. 1999;18:183–91.

    Article  CAS  PubMed  Google Scholar 

  30. Sharkey RM, Goldenberg DM, Murthy S, Pinsky H, Vagg R, Pawlyk D, et al. Clinical evaluation of tumor targeting with a high-affinity, anticarcinoembryonic-antigen-specific, murine monoclonal antibody, MN-14. Cancer. 1993;71:2082–96.

    Article  CAS  PubMed  Google Scholar 

  31. Sultana A, Shore S, Raraty MG, Vinjamuri S, Evans JE, Smith CT, et al. Randomised phase I/II trial assessing the safety and efficacy of radiolabelled anti-carcinoembryonic antigen I(131) KAb201 antibodies given intra-arterially or intravenously in patients with unresectable pancreatic adenocarcinoma. BMC Cancer. 2009;9:66–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hajjar G, Sharkey RM, Burton J, Zhang C-H, Yeldell D, Matthies A, et al. Phase I radioimmunotherapy trial with iodine-131-labeled humanized MN-14 anti-carcinoembryonic antigen monoclonal antibody in patients with metastatic gastrointestinal and colorectal cancer. Clin Colorectal Cancer. 2002;2:31–42.

    Article  CAS  PubMed  Google Scholar 

  33. Baranowska-Kortylewicz J, Abe M, Nearman J, Enke CA. Emerging role of platelet-derived growth factor receptor-beta inhibition in radioimmunotherapy of experimental pancreatic cancer. Clin Cancer Res. 2007;13:299–306.

    Article  CAS  PubMed  Google Scholar 

  34. Abe M, Kortylewicz ZP, Enke CA, Mack E, Baranowska-Kortylewicz J. Activation of PDGFR-β signaling pathway after imatinib and radioimmunotherapy treatment in experimental pancreatic cancer. Cancer (Basel). 2011;3:2501–15.

    Article  CAS  Google Scholar 

  35. Al-Ejeh F, Pajic M, Shi W, Kalimutho M, Miranda M, Nagrial AM, et al. Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma. Clin Cancer Res. 2014;20:3187–97.

    Article  CAS  PubMed  Google Scholar 

  36. Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, et al. Targeting of her2 antigen for the treatment of disseminated peritoneal disease. Clin Cancer Res. 2004;10:7834–41.

    Article  CAS  PubMed  Google Scholar 

  37. Bryan RA, Jiang Z, Jandl T, Strauss J, Koba W, Onyedika C, et al. Treatment of experimental pancreatic cancer with 213-bismuth-labeled chimeric antibody to single-strand DNA. Expert Rev Anticancer Ther. 2014;14:1243–9.

    Article  CAS  PubMed  Google Scholar 

  38. Steinberg W. The clinical utility of the CA 19–9 tumor-associated antigen. Am J Gastroenterol. 1990;85:350–5.

    CAS  PubMed  Google Scholar 

  39. Saitou M, Goto M, Horinouchi M, Tamada S, Nagata K, Hamada T, et al. MUC4 expression is a novel prognostic factor in patients with invasive ductal carcinoma of the pancreas. J Clin Pathol. 2005;58:845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Swartz MJ, Batra SK, Varshney GC, Hollingsworth MA, Yeo CJ, Cameron JL, et al. Muc4 expression increases progressively in pancreatic intraepithelial neoplasia. Am J Clin Pathol. 2002;117:791–6.

    Article  PubMed  Google Scholar 

  41. Ansari D, Urey C, Gundewar C, Bauden MP, Andersson R. Comparison of MUC4 expression in primary pancreatic cancer and paired lymph node metastases. Scand J Gastroenterol. 2013;48:1183–7.

    Article  CAS  PubMed  Google Scholar 

  42. Gulec SA, Cohen SJ, Pennington KL, Zuckier LS, Hauke RJ, Horne H, et al. Treatment of advanced pancreatic carcinoma with 90Y-clivatuzumab tetraxetan: a phase I single-dose escalation trial. Clin Cancer Res. 2011;17:4091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ocean AJ, Pennington KL, Guarino MJ, Sheikh A, Bekaii-Saab T, Serafini AN, et al. Fractionated radioimmunotherapy with (90) Y-clivatuzumab tetraxetan and low-dose gemcitabine is active in advanced pancreatic cancer: a phase 1 trial. Cancer. 2012;118:5497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clinicaltrials.gov. Phase 3 Trial of 90Y-Clivatuzumab Tetraxetan and Gemcitabine vs Placebo and Gemcitabine in Metastatic Pancreatic Cancer (PANCRIT®-1), NCT01956812.

  45. Clinicaltrials.gov. Safety study of 212Pb-TCMC-trastuzumab radio immunotherapy, nct01384253.

  46. Richman CM, Denardo SJ, O’Donnell RT, Yuan A, Shen S, Goldstein DS, et al. High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, M170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin Cancer Res. 2005;11:5920–7.

    Article  CAS  PubMed  Google Scholar 

  47. Liersch T, Meller J, Bittrich M, Kulle B, Becker H, Goldenberg DM. Update of carcinoembryonic antigen radioimmunotherapy with (131)i-labetuzumab after salvage resection of colorectal liver metastases: comparison of outcome to a contemporaneous control group. Ann Surg Oncol. 2007;14:2577–90.

    Article  PubMed  Google Scholar 

  48. Liersch T, Meller J, Kulle B, Behr TM, Markus P, Langer C, et al. Phase ii trial of carcinoembryonic antigen radioimmunotherapy with 131i-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol. 2005;23:6763–70.

    Article  CAS  PubMed  Google Scholar 

  49. Oei AL, Verheijen RH, Seiden MV, Benigno BB, Lopes A, Soper JT, et al. Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int J Cancer. 2007;120:2710–4.

    Article  CAS  PubMed  Google Scholar 

  50. Gold DV, Alisauskas R, Sharkey RM. Targeting of xenografted pancreatic cancer with a new monoclonal antibody, PAM4. Cancer Res. 1995;55:1105–10.

    CAS  PubMed  Google Scholar 

  51. Pasternack JB, Domogauer JD, Khullar A, Akudugu JM, Howell RW. The advantage of antibody cocktails for targeted alpha therapy depends on specific activity. J Nucl Med. 2014;55:2012–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahlin, M., Bauden, M.P., Andersson, R. et al. Radioimmunotherapy—a potential novel tool for pancreatic cancer therapy?. Tumor Biol. 36, 4053–4062 (2015). https://doi.org/10.1007/s13277-015-3479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3479-y

Keywords

Navigation