Skip to main content

Advertisement

Log in

COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human invasive carcinoma-associated stromal cells and carcinoma progression

  • Review
  • Published:
Tumor Biology

Abstract

The COL11A1 human gene codes for the α1 chain of procollagen 11A1 and mature collagen 11A1, an extracellular minor fibrillar collagen. Under regular conditions, this gene and its derived products are mainly expressed by chondrocytes and mesenchymal stem cells as well as osteoblasts. Normal epithelial cells and quiescent fibroblasts from diverse locations do not express them. Mesenchyme-derived tumors and related conditions, such as scleroderma and keloids, are positive for COL11A1/(pro)collagen 11A1 expression, as well as high-grade human gliomas/glioblastomas. This expression is almost absent in benign pathological processes such as breast hyperplasia, sclerosing adenosis, idiopathic pulmonary fibrosis, cirrhosis, pancreatitis, diverticulitis, and inflammatory bowel disease. By contrast, COL11A1/(pro)collagen 11A1 is highly expressed by activated stromal cells of the desmoplastic reaction of different human invasive carcinomas, and this expression is correlated with carcinoma aggressiveness and progression, and lymph node metastasis. COL11A1 upregulation has been shown to be associated to TGF-β1, Wnt, and Hh signaling pathways, which are especially active in cancer-associated stromal cells. At the front of invasive carcinomas, neoplastic epithelial cells, putatively undergoing epithelial-to-mesenchymal transition, and carcinoma-derived cells with highly metastatic capabilities, can express COL11A1. Thus, in established metastases, the expression of COL11A1/(pro)collagen 11A1 could rely on both the metastatic epithelial cells and/or the accompanying activated stromal cells. COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human carcinoma-associated stromal cells and carcinoma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012;5:15. doi:10.1186/1755-1536-5-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 2005;118:1341–53.

    Article  CAS  PubMed  Google Scholar 

  3. Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008;20:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. GeneCards: http://www.genecards.org/cgi-bin/carddisp.pl?gene=COL11A1&search=60c7972800f65b34c22171d38f22a63f. Accessed 23 Dec 2014.

  5. Kao L-P, Yu S-L, Singh S, Wang K-H, Kao A-P, Li SS. Comparative profiling of mRNA and microRNA expression in human mesenchymal stem cells derived from adult adipose and lipoma tissues. Open Stem Cell J. 2009;1:1–9. doi:10.2174/1876893800901010001.

    Article  CAS  Google Scholar 

  6. Grundberg E, Brändström H, Lam KC, Gurd S, Ge B, Harmsen E, et al. Systematic assessment of the human osteoblast transcriptome in resting and induced primary cells. Physiol Genomics. 2008;33:301–11.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuo N, Yu-Hua W, Sumiyoshi H, Sakata-Takatani K, Nagato H, Sakai K, et al. The transcription factor CCAAT-binding factor CBF/NF-Y regulates the proximal promoter activity in the human alpha 1(XI) collagen gene (COL11A1). J Biol Chem. 2003;278:32763–70.

    Article  CAS  PubMed  Google Scholar 

  8. Hida M, Hamanaka R, Okamoto O, Yamashita K, Sasaki T, Yoshioka H, et al. Nuclear factor Y (NF-Y) regulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell Dev Biol Anim. 2014;50:358–66. doi:10.1007/s11626-013-9692-3.

    Article  CAS  PubMed  Google Scholar 

  9. Kahler RA, Yingst SM, Hoeppner LH, Jensen ED, Krawczak D, Oxford JT, et al. Collagen 11a1 is indirectly activated by lymphocyte enhancer-binding factor 1 (Lef1) and negatively regulates osteoblast maturation. Matrix Biol. 2008;27:330–8. doi:10.1016/j.matbio.2008.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Emura M, Ochiai A, Horino M, Arndt W, Kamino K, Hirohashi S. Development of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1. In Vitro Cell Dev Biol Anim. 2000;36:77–80.

    Article  CAS  PubMed  Google Scholar 

  11. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    Article  CAS  PubMed  Google Scholar 

  12. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68:4331–9. doi:10.1158/0008-5472.CAN-08-0943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gardner H, Strehlow D, Bradley L, Widom R, Farina A, de Fougerolles A, et al. Global expression analysis of the fibroblast transcriptional response to TGFbeta. Clin Exp Rheumatol. 2004;22(3 Suppl 33):S47–57.

    CAS  PubMed  Google Scholar 

  14. Wu YH, Chang TH, Huang YF, Huang HD, Chou CY. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene. 2014;33:3432–40. doi:10.1038/onc.2013.307.

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira FS, Bellesini LS, Defino HL, da Silva Herrero CF, Beloti MM, Rosa AL. Hedgehog signaling and osteoblast gene expression are regulated by purmorphamine in human mesenchymal stem cells. J Cell Biochem. 2012;113:204–8. doi:10.1002/jcb.23345.

    Article  CAS  PubMed  Google Scholar 

  16. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107:20009–14. doi:10.1073/pnas.1013805107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mishra P, Banerjee D, Ben-Baruch A. Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol. 2011;89:31–9. doi:10.1189/jlb.0310182.

    Article  CAS  PubMed  Google Scholar 

  18. Margolin DA, Silinsky J, Grimes C, Spencer N, Aycock M, Green H, et al. Lymph node stromal cells enhance drug-resistant colon cancer cell tumor formation through SDF-1α/CXCR4 paracrine signaling. Neoplasia. 2011;13:874–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Polanska UM, Orimo A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol. 2013;228:1651–7. doi:10.1002/jcp.24347.

    Article  CAS  PubMed  Google Scholar 

  20. Fischer H, Salahshor S, Stenling R, Björk J, Lindmark G, Iselius L, Rubio C, Lindblom A. COL11A1 in FAP polyps and in sporadic colorectal tumors. BMC Cancer 2001;1:17. http://www.biomedcentral.com/1471-2407/1/17.

  21. Pilarsky C, Ammerpohl O, Sipos B, Dahl E, Hartmann A, Wellmann A, et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J Cell Mol Med. 2008;12:2823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008;14:5995–6004. doi:10.1158/1078-0432.CCR-08-0291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A. 2009;106:4254–9. doi:10.1073/pnas.0813203106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gene Expression Atlas- Summary for COL11A1 (Homo sapiens). http://www-test.ebi.ac.uk/gxa/gene/ENSG00000060718. Accessed 23 Dec 2014.

  25. Lin PP, Wang Y, Lozano G. Mesenchymal stem cells and the origin of Ewing’s sarcoma. Sarcoma. 2011;pii:276463. doi: 10.1155/2011/276463.

  26. Hajdu M, Singer S, Maki RG, Schwartz GK, Keohan ML, Antonescu CR. IGF2 over-expression in solitary fibrous tumours is independent of anatomical location and is related to loss of imprinting. J Pathol. 2010;221:300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. An JH, Lee SY, Jeon JY, Cho KG, Kim SU, Lee MA. Identification of gliotropic factors that induce human stem cell migration to malignant tumor. J Proteome Res. 2009;8:2873–81.

    Article  CAS  PubMed  Google Scholar 

  28. Chernov AV, Baranovskaya S, Golubkov VS, Wakeman DR, Snyder EY, Williams R, et al. Microarray-based transcriptional and epigenetic profiling of matrix metalloproteinases, collagens, and related genes in cancer. J Biol Chem. 2010;285:19647–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pope WB, Mirsadraei L, Lai A, Eskin A, Qiao J, Kim HJ, et al. Differential gene expression in glioblastoma defined by ADC histogram analysis: relationship to extracellular matrix molecules and survival. AJNR Am J Neuroradiol. 2012;33:1059–64. doi:10.3174/ajnr.A2917.

    Article  CAS  PubMed  Google Scholar 

  30. Seemann L, Shulman J, Gunaratne GH. A robust topology-based algorithm for gene expression profiling. ISRN Bioinformatics 2012; Article ID 381023. doi:10.5402/2012/381023.

  31. Chen W, Fu X, Sun X, Sun T, Zhao Z, Sheng Z. Analysis of differentially expressed genes in keloids and normal skin with cDNA microarray. J Surg Res. 2003;113:208–16.

    Article  CAS  PubMed  Google Scholar 

  32. Seifert O, Bayat A, Geffers R, Dienus K, Buer J, Löfgren S, et al. Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen. 2008;16:254–65. doi:10.1111/j.1524-475X.2007.00343.x.

    Article  PubMed  Google Scholar 

  33. Yagi Y, Muroga E, Naitoh M, Isogai Z, Matsui S, Ikehara S, et al. An ex vivo model employing keloid-derived cell-seeded collagen sponges for therapy development. J Investig Dermatol. 2013;133:386–93. doi:10.1038/jid.2012.314.

    Article  CAS  PubMed  Google Scholar 

  34. Gardner H, Shearstone JR, Bandaru R, Crowell T, Lynes M, Trojanowska M, et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum. 2006;54:1961–73.

    Article  CAS  PubMed  Google Scholar 

  35. Togo S, Polanska UM, Horimoto Y, Orimo A. Carcinoma-associated fibroblasts are a promising therapeutic target. Cancers (Basel). 2013;5:149–69. doi:10.3390/cancers5010149.

    Article  CAS  Google Scholar 

  36. Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. 2009;3:287–310. doi:10.1007/s12079-009-0075-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, et al. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A. 2010;107:14170–5. doi:10.1073/pnas.1009426107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mifflin RC, Pinchuk IV, Saada JI, Powell DW. Intestinal myofibroblasts: targets for stem cell therapy. Am J Physiol Gastrointest Liver Physiol. 2011;300:G684–96. doi:10.1152/ajpgi.00474.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishioka Y, Azuma M, Kishi M, Aono Y. Targeting platelet-derived growth factor as a therapeutic approach in pulmonary fibrosis. J Med Invest. 2013;60:175–83.

    Article  PubMed  Google Scholar 

  40. Keane FM, Yao TW, Seelk S, Gall MG, Chowdhury S, Poplawski SE, et al. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs. FEBS Open Bio. 2013;4:43–54. doi:10.1016/j.fob.2013.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rönty M. Palladin, a novel microfilament protein. PhD thesis. University of Helsinki, Department of Pathology; 2008.

  42. Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 2005;166:913–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fuentes-Martínez N, García-Pravia C, García-Ocaña M, Menéndez-Rodríguez P, Del Amo J, Suárez-Fernández L, et al. Overexpression of proCOL11A1 as a stromal marker of breast cancer. Histol Histopathol. 2015;30:87–93.

    PubMed  Google Scholar 

  44. Erkan M, Weis N, Pan Z, Schwager C, Samkharadze T, Jiang X, et al. Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol Cancer 2010;9:88. http://www.molecular-cancer.com/content/9/1/88.

  45. Prenzel KL, Ribati M, Warnecke-Ebers U, Stöcklein N, Vallböhmer D, Stippel D, et al. Differential expression of COL11A1 in chronic pancreatitis and periampullary adenocarcinomas. Deut Ges Chir. 2009;38:209–10. Chirurgisches Forum und DGAV Forum 2009.

    Google Scholar 

  46. Dooley TP, Curto EV, Reddy SP, Davis RL, Lambert GW, Wilborn TW, et al. Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: screening by DNA microarrays. Inflamm Bowel Dis. 2004;10:1–14.

    Article  PubMed  Google Scholar 

  47. Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumor Biol. 2014;35:2871–82. doi:10.1007/s13277-013-1511-7.

    Article  CAS  Google Scholar 

  48. Schmalbach CE, Chepeha DB, Giordano TJ, Rubin MA, Teknos TN, Bradford CR, et al. Molecular profiling and the identification of genes associated with metastatic oral cavity/pharynx squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130:295–302.

    Article  PubMed  Google Scholar 

  49. Sok JC, Kuriakose MA, Mahajan VB, Pearlman AN, DeLacure MD, Chen FA. Tissue-specific gene expression of head and neck squamous cell carcinoma in vivo by complementary DNA microarray analysis. Arch Otolaryngol Head Neck Surg. 2003;129:760–70.

    Article  PubMed  Google Scholar 

  50. Sok JC, Lee JA, Dasari S, Joyce S, Contrucci SC, Egloff AM, et al. Collagen type XI α1 facilitates head and neck squamous cell cancer growth and invasion. Br J Cancer. 2013;109:3049–56. doi:10.1038/bjc.2013.624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fuentes-Martínez N. Colágeno 11: nuevo marcador en el cáncer de mama. PhD thesis. Universidad de Oviedo, Surgery and Medical Surgical Specialities Department; 2009.

  52. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. Transcriptional evidence for the “reverse Warburg effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “neuron-glia metabolic coupling”. Aging (Albany NY). 2010;2:185–99.

    Article  CAS  Google Scholar 

  53. Planche A, Bacac M, Provero P, Fusco C, Delorenzi M, Stehle JC, et al. Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS ONE. 2011;6:e18640. doi:10.1371/journal.pone.0018640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. García-Ocaña M, Vázquez F, García-Pravia C, Fuentes-Martínez N, Menéndez-Rodríguez P, Fresno-Forcelledo F, et al. Characterization of a novel mouse monoclonal antibody, clone 1E8.33, highly specific for human procollagen 11A1, a tumor-associated stromal component. Int J Oncol. 2012;40:1447–54. doi:10.3892/ijo.2012.1360.

    PubMed  Google Scholar 

  55. Freire J, Domínguez-Hormaetxe S, Pereda S, De Juan A, Vega A, Simón L, Gómez-Román J. Collagen, type XI, alpha 1: an accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol Res Pract. 2014; pii: S0344-0338(14)00225-8. doi: 10.1016/j.prp.2014.07.012.

  56. Wang KK, Liu N, Radulovich N, Wigle DA, Johnston MR, Shepherd FA, et al. Novel candidate tumor marker genes for lung adenocarcinoma. Oncogene. 2002;21:7598–604.

    Article  CAS  PubMed  Google Scholar 

  57. Chong IW, Chang MY, Chang HC, Yu YP, Sheu CC, Tsai JR, et al. Great potential of a panel of multiple hMTH1, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncol Rep. 2006;16:981–8.

    CAS  PubMed  Google Scholar 

  58. Fuentes N, Pravia CG, Rodriguez PM, Toyos JR D l, Ocana MG, Del Amo J, et al. Anticol11a1 a marker of infiltration in bronchioloalveolar lung carcinoma. Virchows Arch. 2010;457:230.

    Google Scholar 

  59. Sun Y, Wang L, Jiang M, Huang J, Liu Z, Wolfl S. Secreted phosphoprotein 1 upstream invasive network construction and analysis of lung adenocarcinoma compared with human normal adjacent tissues by integrative biocomputation. Cell Biochem Biophys. 2010;56:59–71. doi:10.1007/s12013-009-9071-6.

    Article  CAS  PubMed  Google Scholar 

  60. Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, et al. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A. 2011;108:7160–5. doi:10.1073/pnas.1014506108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu SH, Qian LJ, Mou HZ, Zhu CH, Zhou XM, Liu XL, et al. Difference of gene expression profiles between esophageal carcinoma and its pericancerous epithelium by gene chip. World J Gastroenterol. 2003;9:417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vecchi M, Nuciforo P, Romagnoli S, Confalonieri S, Pellegrini C, Serio G, et al. Gene expression of early and advanced gastric cancer. Oncogene. 2007;26:4284–94.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Y, Zhou T, Li A, Yao H, He F, Wang L, et al. A potential role of collagens expression in distinguishing between premalignant and malignant lesions in stomach. Anat Rec. 2009;292:692–700.

    Article  CAS  Google Scholar 

  64. Barneo L, del Amo J, García-Pravia C, Toyos JR D l, Pérez-Basterrechea M, González-Pinto I, et al. Identification of specific genes by microarrays, validation and use of polyclonal antibodies in pancreatic cancer: preliminary results. In: Vollmar B, editor. 41st congress of the European society for surgical research-ESSR 2006. Bologna: Medimond, International Proceedings; 2006. p. 27–35.

    Google Scholar 

  65. del Amo-Iribarren J. Identificación de marcadores para diagnóstico diferencial y potenciales dianas terapéuticas en adenocarcinoma ductal de páncreas mediante herramientas genómicas. PhD thesis. Universidad del País Vasco, Genetics, Physical Anthropology and Animal Physiology Department; 2006.

  66. García-Pravia C, Galván JA, Gutiérrez-Corral N, Solar-García L, García-Pérez E, García-Ocaña M, et al. Overexpression of COL11A1 by cancer-associated fibroblasts: clinical relevance of a stromal marker in pancreatic cancer. PLoS ONE. 2013;8:e78327. doi:10.1371/journal.pone.0078327.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fischer H, Stenling R, Rubio C, Lindblom A. Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis. 2001;22:875–8. doi:10.1093/carcin/22.6.875.

    Article  CAS  PubMed  Google Scholar 

  68. Croner RS, Foertsch T, Brueckl WM, Guenther K, Siebenhaar R, Stremmel C, et al. Common denominator genes that distinguish colorectal carcinoma from normal mucosa. Int J Color Dis. 2005;20:353–62.

    Article  Google Scholar 

  69. Lascorz J, Hemminki K, Försti A. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development. J Carcinog. 2011;10:7. doi:10.4103/1477-3163.78268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cueva-Cayetano R, Galvan-Hernandez JÁ, Suarez-Fernandez L, Menendez-Rodriguez MP, Garcia-Pravia C, Barneo L. Preliminary analysis of collagen, type XI, alpha 1 (COL11A1), inhibin alpha (INHBA) and secreted protein acidic and rich in cysteine (SPARC, osteonectin) as potential markers of colon cancer [abstract]. Brit J Surg. 2013;100 Suppl 1:7.

    Google Scholar 

  71. Galván JA, García-Martínez J, Vázquez-Villa F, García-Ocaña M, García-Pravia C, Menéndez-Rodríguez P, et al. Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma. BMC Cancer. 2014;14:867. doi:10.1186/1471-2407-14-867.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, et al. A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res. 2014;20:711–23. doi:10.1158/1078-0432.CCR-13-1256.

    Article  CAS  PubMed  Google Scholar 

  73. Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, et al. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res. 2006;66:5278–86.

    Article  CAS  PubMed  Google Scholar 

  74. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11:R7. doi:10.1186/bcr2222.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, et al. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res. 2012;72:4574–86. doi:10.1158/0008-5472.CAN-12-0636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Castellana B, Escuin D, Peiró G, Garcia-Valdecasas B, Vázquez T, Pons C, et al. ASPN and GJB2 are implicated in the mechanisms of invasion of ductal breast carcinomas. J Cancer. 2012;3:175–83. doi:10.7150/jca.4120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vargas AC, McCart Reed AE, Waddell N, Lane A, Reid LE, Smart CE, et al. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Breast Cancer Res Treat. 2012;135:153–65. doi:10.1007/s10549-012-2123-4.

    Article  CAS  PubMed  Google Scholar 

  78. Zhu TX, Lan B, Meng LY, Yang YL, Li RX, Li EM, et al. ECM-related gene expression profile in vascular smooth muscle cells from human saphenous vein and internal thoracic artery. J Cardiothorac Surg. 2013;8:155. doi:10.1186/1749-8090-8-155.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Buckanovich RJ, Sasaroli D, O’Brien-Jenkins A, Botbyl J, Hammond R, Katsaros D, et al. Tumor vascular proteins as biomarkers in ovarian cancer. J Clin Oncol. 2007;25:852–61.

    Article  CAS  PubMed  Google Scholar 

  80. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8. doi:10.1172/JCI39104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–37. doi:10.1172/JCI36183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4:1591–613.

    Article  CAS  PubMed  Google Scholar 

  83. Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 2008;55:2016–27.

    CAS  PubMed  Google Scholar 

  84. Anastassiou D, Rumjantseva V, Cheng W, Huang J, Canoll PD, Yamashiro DJ, Kandel JJ. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo. BMC Cancer 2011; 11:529. http://www.biomedcentral.com/1471-2407/11/529.

  85. Xu Z, Vonlaufen A, Phillips PA, Fiala-Beer E, Zhang X, Yang L, et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol. 2010;177:2585–96. doi:10.2353/ajpath.2010.090899.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pishvaian MJ, Feltes CM, Thompson P, Bussemakers MJ, Schalken JA, Byers SW. Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res. 1999;59:947–52.

    CAS  PubMed  Google Scholar 

  87. Chu K, Cheng CJ, Ye X, Lee YC, Zurita AJ, Chen DT, et al. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res. 2008;6:1259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang CF, Lira C, Chu K, Bilen MA, Lee YC, Ye X, et al. Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res. 2010;70:4580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim H, Watkinson J, Varadan V, Anastassiou D. Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics 2010;3:51. http://www.biomedcentral.com/1755-8794/3/51.

  91. Suzuki M, Tarin D. Gene expression profiling of human lymph node metastases and matched primary breast carcinomas: clinical implications. Mol Oncol. 2007;1:172–80. doi:10.1016/j.molonc.2007.03.005.

    Article  PubMed  Google Scholar 

  92. Feng Y, Sun B, Li X, Zhang L, Niu Y, Xiao C, et al. Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat. 2007;103:319–29.

    Article  CAS  PubMed  Google Scholar 

  93. Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA, et al. A gene expression signature that defines breast cancer metastases. Clin Exp Metastasis. 2009;26:205–13. doi:10.1007/s10585-008-9232-9.

    Article  CAS  PubMed  Google Scholar 

  94. Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 2009;8:90. doi:10.1186/1476-4598-8-90.

    Article  PubMed  PubMed Central  Google Scholar 

  95. López-Lago MA, Thodima VJ, Guttapalli A, Chan T, Heguy A, Molina AM, et al. Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression. Cancer Res. 2010;70:9682–92. doi:10.1158/0008-5472.CAN-10-2279.

    Article  PubMed  PubMed Central  Google Scholar 

  96. ArrayExpress Experiment E-MTAB-37. Transcription profiling of human multiple cancer cell lines (950 samples). http://www-test.ebi.ac.uk/gxa/experiment/E-MTAB-37/ENSG00000060718?ef=cell_line. Accessed 23 Dec 2014.

  97. Raglow Z, Thomas SM. Tumor matrix protein collagen XIα1 in cancer. Cancer Lett. 2015;357:448–53. doi:10.1016/j.canlet.2014.12.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Inti Zlobec for the critical reading of the manuscript and helpful comments. This work was co-financed by European Union ERDF Funds; by the INNPACTO-ONCOPAN IPT-010000-2010-31 Project; by the FISS-09-PS09/01911 Project, Ministry of Science and Innovation, Spain; by the FC-11-PC10-23, FICYT Project, Axe 1 of the 2007–2013 ERDF Operational Framework Programme of the Principality of Asturias, Spain; and by Oncomatrix, S.L. Derio, Spain.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. de los Toyos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Villa, F., García-Ocaña, M., Galván, J.A. et al. COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human invasive carcinoma-associated stromal cells and carcinoma progression. Tumor Biol. 36, 2213–2222 (2015). https://doi.org/10.1007/s13277-015-3295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3295-4

Keywords

Navigation