Skip to main content

Advertisement

Log in

The protein p17 signaling pathways in cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

P17 is a novel neuronal protein expressed under physiological conditions only at very low levels in other tissues. Accumulating data indicate its crucial involvement in tumorigenic effects. Using molecular, cellular, and biocomputational methods, the current study unraveled p17 mode of action. Data indicate that mitochondria-associated p17 interacts with the proteins TMEM115, YPEL3, ERP44, CDK5RAP, and NNAT. Moreover, p17 drives the cell cycle into the G0/G1 phase and enhances survival of proliferating cells. Interference with p17 activities thus might become a novel option to influence also the tumor suppressor protein p53 signaling pathways for the treatment of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nehar S, Mishra M, Heese K. Identification and characterisation of the novel amyloid-beta peptide-induced protein p17. FEBS Lett. 2009;583(19):3247–53. doi:10.1016/j.febslet.2009.09.018.

    Article  PubMed  CAS  Google Scholar 

  2. Guo C, Zhang X, Fink SP, Platzer P, Wilson K, Willson JK, et al. Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res. 2008;68(15):6118–26. doi:10.1158/0008-5472.CAN-08-1259.

    Article  PubMed  CAS  Google Scholar 

  3. Wang LT, Lin CS, Chai CY, Liu KY, Chen JY, Hsu SH. Functional interaction of Ugene and EBV infection mediates tumorigenic effects. Oncogene. 2011;30(26):2921–32. doi:10.1038/onc.2011.16.

    Article  PubMed  CAS  Google Scholar 

  4. Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, et al. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991;266(24):15771–81.

    PubMed  CAS  Google Scholar 

  5. Heese K, Yamada T, Akatsu H, Yamamoto T, Kosaka K, Nagai Y, et al. Characterizing the new transcription regulator protein p60TRP. J Cell Biochem. 2004;91(5):1030–42. doi:10.1002/jcb.20010.

    Article  PubMed  CAS  Google Scholar 

  6. Mishra M, Akatsu H, Heese K. The novel protein MANI modulates neurogenesis and neurite-cone growth. J Cell Mol Med. 2011;15(8):1713–25. doi:10.1111/j.1582-4934.2010.01134.x.

    Article  PubMed  CAS  Google Scholar 

  7. Mishra M, Inoue N, Heese K. Characterizing the novel protein p33MONOX. Mol Cell Biochem. 2011;350(1–2):127–34. doi:10.1007/s11010-010-0690-4.

    Article  PubMed  CAS  Google Scholar 

  8. Mishra M, Heese K. P60TRP interferes with the GPCR/secretase pathway to mediate neuronal survival and synaptogenesis. J Cell Mol Med. 2011;15(11):2462–77. doi:10.1111/j.1582-4934.2010.01248.x.

    Article  PubMed  CAS  Google Scholar 

  9. Islam O, Gong X, Rose-John S, Heese K. Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell. 2009;20(1):188–99. doi:10.1091/mbc.E08-05-0463.

    Article  PubMed  CAS  Google Scholar 

  10. Yokota T, Mishra M, Akatsu H, Tani Y, Miyauchi T, Yamamoto T, et al. Brain site-specific gene expression analysis in Alzheimer's disease patients. Eur J Clin Investig. 2006;36(11):820–30. doi:10.1111/j.1365-2362.2006.01722.x.

    Article  CAS  Google Scholar 

  11. Heese K, Nagai Y, Sawada T. Induction of rat L-phosphoserine phosphatase by amyloid-beta (1-42) is inhibited by interleukin-11. Neurosci Lett. 2000;288(1):37–40.

    Article  PubMed  CAS  Google Scholar 

  12. Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, Berberich SJ. YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res. 2010;70(9):3566–75. doi:10.1158/0008-5472.CAN-09-3219.

    Article  PubMed  CAS  Google Scholar 

  13. Berberich SJ, Todd A, Tuttle R. Why YPEL3 represents a novel tumor suppressor. Front Biosci. 2011;16:1746–51.

    Article  CAS  Google Scholar 

  14. Tuttle R, Simon M, Hitch DC, Maiorano JN, Hellan M, Ouellette J, et al. Senescence-associated gene YPEL3 is downregulated in human colon tumors. Ann Surg Oncol. 2011;18(6):1791–6. doi:10.1245/s10434-011-1558-x.

    Article  PubMed  Google Scholar 

  15. Anelli T, Alessio M, Bachi A, Bergamelli L, Bertoli G, Camerini S, et al. Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J. 2003;22(19):5015–22. doi:10.1093/emboj/cdg491.

    Article  PubMed  CAS  Google Scholar 

  16. Simmen T, Lynes EM, Gesson K, Thomas G. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). Biochim Biophys Acta. 2010;1798(8):1465–73. doi:10.1016/j.bbamem.2010.04.009.

    Article  PubMed  CAS  Google Scholar 

  17. Mak GW, Chan MM, Leong VY, Lee JM, Yau TO, Ng IO, et al. Overexpression of a novel activator of PAK4, the CDK5 kinase-associated protein CDK5RAP3, promotes hepatocellular carcinoma metastasis. Cancer Res. 2011;71(8):2949–58. doi:10.1158/0008-5472.CAN-10-4046.

    Article  PubMed  CAS  Google Scholar 

  18. Oyang EL, Davidson BC, Lee W, Poon MM. Functional characterization of the dendritically localized mRNA neuronatin in hippocampal neurons. PLoS One. 2011;6(9):e24879. doi:10.1371/journal.pone.0024879.

    Article  PubMed  CAS  Google Scholar 

  19. Akbari M, Otterlei M, Pena-Diaz J, Krokan HE. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress. Neuroscience. 2007;145(4):1201–12. doi:10.1016/j.neuroscience.2006.10.010.

    Article  PubMed  CAS  Google Scholar 

  20. Krokan HE, Otterlei M, Nilsen H, Kavli B, Skorpen F, Andersen S, et al. Properties and functions of human uracil-DNA glycosylase from the UNG gene. Prog Nucleic Acid Res Mol Biol. 2001;68:365–86.

    Article  PubMed  CAS  Google Scholar 

  21. Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, et al. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem. 2002;277(42):39926–36. doi:10.1074/jbc.M207107200.

    Article  PubMed  CAS  Google Scholar 

  22. Aravind L, Koonin EV. The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Genome Biol. 2000;1(4):RESEARCH0007. doi:10.1186/gb-2000-1-4-research0007.

  23. Mitra S. DNA glycosylases: specificity and mechanisms. Prog Nucleic Acid Res Mol Biol. 2001;68:189–92.

    Article  PubMed  CAS  Google Scholar 

  24. Smith ML, Seo YR. p53 regulation of DNA excision repair pathways. Mutagenesis. 2002;17(2):149–56.

    Article  PubMed  CAS  Google Scholar 

  25. Hoeijmakers JH. Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mech Ageing Dev. 2007;128(7–8):460–2. doi:10.1016/j.mad.2007.05.002.

    Article  PubMed  CAS  Google Scholar 

  26. Hang B, Singer B. Protein-protein interactions involving DNA glycosylases. Chem Res Toxicol. 2003;16(10):1181–95. doi:10.1021/tx030020p.

    Article  PubMed  CAS  Google Scholar 

  27. Offer H, Milyavsky M, Erez N, Matas D, Zurer I, Harris CC, et al. Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene. 2001;20(5):581–9. doi:10.1038/sj.onc.1204120.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou J, Ahn J, Wilson SH, Prives C. A role for p53 in base excision repair. EMBO J. 2001;20(4):914–23. doi:10.1093/emboj/20.4.914.

    Article  PubMed  CAS  Google Scholar 

  29. Inoue K, Kurabayashi A, Shuin T, Ohtsuki Y, Furihata M. Overexpression of p53 protein in human tumors. Med Mol Morphol. 2012;45(3):115–23. doi:10.1007/s00795-012-0575-6.

    Article  PubMed  CAS  Google Scholar 

  30. Lehmann BD, Pietenpol JA. Targeting mutant p53 in human tumors. J Clin Oncol. 2012;30(29):3648–50. doi:10.1200/JCO.2012.44.0412.

    Article  PubMed  CAS  Google Scholar 

  31. Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, Turunen M, et al. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ. 2012;19(12):1992–2002. doi:10.1038/cdd.2012.89.

    Article  PubMed  CAS  Google Scholar 

  32. Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol. 2012;2012:170325. doi:10.1155/2012/170325.

    PubMed  Google Scholar 

  33. da Costa PE, Cavalli LR, Rainho CA. Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines. Epigenetics. 2011;6(12):1413–24. doi:10.4161/epi.6.12.18271.

    Article  Google Scholar 

  34. Tuttle R, Miller KR, Maiorano JN, Termuhlen PM, Gao Y, Berberich SJ. Novel senescence associated gene, YPEL3, is repressed by estrogen in ER+ mammary tumor cells and required for tamoxifen-induced cellular senescence. Int J Cancer. 2012;130(10):2291–9. doi:10.1002/ijc.26239.

    Article  PubMed  CAS  Google Scholar 

  35. Berberich SJ. RNAi knockdown of HdmX or Hdm2 leads to new insights into p53 signaling. Cell Cycle. 2010;9(18):3640–1.

    Article  PubMed  CAS  Google Scholar 

  36. Hubertus J, Lacher M, Rottenkolber M, Muller-Hocker J, Berger M, Stehr M, et al. Altered expression of imprinted genes in Wilms tumors. Oncol Rep. 2011;25(3):817–23. doi:10.3892/or.2010.1113.

    PubMed  CAS  Google Scholar 

  37. Kaushal M, Mishra AK, Sharma J, Zomawia E, Kataki A, Kapur S, et al. Genomic alterations in breast cancer patients in betel quid and non betel quid chewers. PLoS One. 2012;7(8):e43789. doi:10.1371/journal.pone.0043789.

    Article  PubMed  CAS  Google Scholar 

  38. Kuerbitz SJ, Pahys J, Wilson A, Compitello N, Gray TA. Hypermethylation of the imprinted NNAT locus occurs frequently in pediatric acute leukemia. Carcinogenesis. 2002;23(4):559–64.

    Article  PubMed  CAS  Google Scholar 

  39. Schulz R, McCole RB, Woodfine K, Wood AJ, Chahal M, Monk D, et al. Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum Mol Genet. 2009;18(1):118–27. doi:10.1093/hmg/ddn322.

    Article  PubMed  CAS  Google Scholar 

  40. Evans HK, Wylie AA, Murphy SK, Jirtle RL. The neuronatin gene resides in a “micro-imprinted” domain on human chromosome 20q11.2. Genomics. 2001;77(1–2):99–104.

    Article  PubMed  CAS  Google Scholar 

  41. Uchihara T, Okubo C, Tanaka R, Minami Y, Inadome Y, Iijima T, et al. Neuronatin expression and its clinicopathological significance in pulmonary non-small cell carcinoma. J Thorac Oncol. 2007;2(9):796–801. doi:10.1097/JTO.0b013e318145af5e.

    Article  PubMed  Google Scholar 

  42. Siu IM, Bai R, Gallia GL, Edwards JB, Tyler BM, Eberhart CG, et al. Coexpression of neuronatin splice forms promotes medulloblastoma growth. Neuro Oncol. 2008;10(5):716–24. doi:10.1215/15228517-2008-038.

    Article  PubMed  CAS  Google Scholar 

  43. Xu DS, Yang C, Proescholdt M, Brundl E, Brawanski A, Fang X, et al. Neuronatin in a subset of glioblastoma multiforme tumor progenitor cells is associated with increased cell proliferation and shorter patient survival. PLoS One. 2012;7(5):e37811. doi:10.1371/journal.pone.0037811.

    Article  PubMed  CAS  Google Scholar 

  44. Contreras-Vallejos E, Utreras E, Gonzalez-Billault C. Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cell Signal. 2012;24(1):44–52. doi:10.1016/j.cellsig.2011.08.022.

    Article  PubMed  CAS  Google Scholar 

  45. Rosales JL, Lee KY. Extraneuronal roles of cyclin-dependent kinase 5. Bioessays. 2006;28(10):1023–34. doi:10.1002/bies.20473.

    Article  PubMed  CAS  Google Scholar 

  46. Arif A. Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Biochem Pharmacol. 2012;84(8):985–93. doi:10.1016/j.bcp.2012.06.027.

    Article  PubMed  CAS  Google Scholar 

  47. Stav D, Bar I, Sandbank J. Usefulness of CDK5RAP3, CCNB2, and RAGE genes for the diagnosis of lung adenocarcinoma. Int J Biol Markers. 2007;22(2):108–13.

    PubMed  CAS  Google Scholar 

  48. Lu X, Bocangel D, Nannenga B, Yamaguchi H, Appella E, Donehower LA. The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Mol Cell. 2004;15(4):621–34. doi:10.1016/j.molcel.2004.08.007.

    Article  PubMed  CAS  Google Scholar 

  49. Lu X, Nguyen TA, Appella E, Donehower LA. Homeostatic regulation of base excision repair by a p53-induced phosphatase: linking stress response pathways with DNA repair proteins. Cell Cycle. 2004;3(11):1363–6.

    Article  PubMed  CAS  Google Scholar 

  50. Macurek L, Benada J, Mullers E, Halim VA, Krejcikova K, Burdova K et al. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis. Cell Cycle. 2013;12(2): 251–62. doi: 10.4161/cc.23057.

    Google Scholar 

  51. Park HK, Panneerselvam J, Dudimah FD, Dong G, Sebastian S, Zhang J, et al. Wip1 contributes to cell homeostasis maintained by the steady-state level of Wtp53. Cell Cycle. 2011;10(15):2574–82.

    Article  PubMed  CAS  Google Scholar 

  52. Lowe J, Cha H, Lee MO, Mazur SJ, Appella E, Fornace Jr AJ. Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci. 2012;17:1480–98.

    Article  CAS  Google Scholar 

  53. Gaiddon C, Moorthy NC, Prives C. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J. 1999;18(20):5609–21. doi:10.1093/emboj/18.20.5609.

    Article  PubMed  CAS  Google Scholar 

  54. Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R, et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature. 2012;493(7432):406–10. doi:10.1038/nature11725.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Hanyang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Heese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heese, K. The protein p17 signaling pathways in cancer. Tumor Biol. 34, 4081–4087 (2013). https://doi.org/10.1007/s13277-013-0999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0999-1

Keywords

Navigation