Skip to main content
Log in

Decrypting the regulation and mechanism of nickel resistance in white birch (Betula papyrifera) using cross-species metal-resistance genes

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Recent studies have found that many transporters, metabolic products and chelators play a role in heavy metal (HM) resistance in model plants. Knowledge of mechanisms involved in resistance to HM in higher plant species is limited. In the present study, the expression of four novel genes (AT2G16800, GR, ZAT11, and IREG1) in white birch (Betula papyrifera) growing in soil contaminated with different levels of nickel were investigated. B. papyrifera seedlings were treated with different doses of nickel including 5.56, 1600, and 4800 mg/kg in growth chamber screening trials. The expression of targeted genes in nickel resistant and susceptible genotypes was measured using RT-qPCR. Field trials were also conducted to assess the regulation of these genes in B. papyrifera growing in metal-contaminated and uncontaminated sites. The transcription factor ZAT11 was the only gene affected (downregulation) by nickel at the low dose of 5.56 mg/kg. The expression of all the four genes was affected by the high dose of 1600 mg/kg resulting in the downregulation of AT2G16800, GR, and ZAT11 and the upregulation of IREG1. ZAT11 and IREG1 were differentially expressed in resistant genotypes. No differences in gene expression were found when samples from metal-contaminated and reference field sites were compared, but the expression of AT2G16800 and IREG1 was higher in roots compared to leaves. The findings of this study suggest that the bioavailable amounts of nickel that is usually found in highly metal-contaminated soils in mining regions cannot trigger a measurable genetic response in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Callahan DL, Roessner U, Dumontet V, Perrier N, Wedd AG, Richard AJ, Baker AJ, Kolev SD (2008) LC–MS and GC–MS metabolite profiling of nickel (II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel (II) ligand. Phytochemistry 69:240–251

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Deng X, He J, He N (2013) Comparative study on Ni2+-affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni2+ bioaccumulation. Bioresour Technol 130:69–74

    Article  CAS  PubMed  Google Scholar 

  • Douchkov D, Gryczka C, Stephan UW, Hell R, Bäumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374

    Article  CAS  Google Scholar 

  • Eränen JK, Nilsen J, Zverev VE, Kozlov MV (2009) Mountain birch under multiple stressors–heavy metal-resistant populations co-resistant to biotic stress but maladapted to abiotic stress. J Evol Biol 22:840–851

    Article  PubMed  Google Scholar 

  • Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 6:754. doi:10.3389/fpls.2015.00754

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal SS, Huffaker RC (1984) Nitrogen toxicity in plants. Nitrogen Crop Prod 24:97–118

    Google Scholar 

  • Guan MY, Fan SK, Fang XZ, Jin CW (2015) Modification of nitrate uptake pathway in plants affects the cadmium uptake by roots. Plant Signal Behav 10(3):e990794

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu Rev Ecol Syst 10:173–200

    Article  Google Scholar 

  • Hassinen V, Vallinkoski VM, Issakainen S, Tervahauta A, Kärenlampi S, Servomaa K (2009) Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula × tremuloides) grown in contaminated soil. Environ Pollut 157:922–930

    Article  CAS  PubMed  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JA (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkey FM, Matthews J, Ryser P (2012) Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions. Environ Pollut 164:53–58

    Article  CAS  PubMed  Google Scholar 

  • Koptsik S, Koptsik G, Livantsova S, Eruslankina L, Zhmelkova T, Vologdina Z (2003) Heavy metals in soils near the nickel smelter: chemistry, spatial variation, and impacts on plant diversity. J Environ Monit 5:441–450

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Article  PubMed  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lin Y-F, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, An J, Han HJ, Kim SH, Lim CO, Yun DJ, Chung WS (2014) ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance in Arabidopsis. Plant Cell Rep 33:2015–2021

    Article  CAS  PubMed  Google Scholar 

  • Løbersli EM, Steinnes E (1988) Metal uptake in plants from a birch forest area near a copper smelter in Norway. Water Air Soil Pollut 37:25–39

    Article  Google Scholar 

  • Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    Article  CAS  PubMed  Google Scholar 

  • Maron LG, Guimarães CT, Kirst M, Albert PS, Birchler JA, Bradbury PJ, Buckler ES, Coluccio AE, Danilova TV, Kudrna D, Magalhaes JV (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci USA 110:5241–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg AA, Macnair MR (1991) The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv. and Agrostis capillaris L. New Phytol 119:291–297

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. J Exp Bot 65(6):1551–1564

    Article  CAS  PubMed  Google Scholar 

  • Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Jiménez E, Esteban E, Carpena-Ruiz RO, Lobo MC, Peñalosa JM (2012) Phytostabilisation with Mediterranean shrubs and liming improved soil quality in a pot experiment with a pyrite mine soil. J Hazard Mater 201–202:52–59

    Article  PubMed  Google Scholar 

  • Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL (2014) A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J 78:951–963

    Article  CAS  PubMed  Google Scholar 

  • Nkongolo KK, Spiers G, Beckett P, Narendrula R, Theriault G, Tran A, Kalubi KN (2013) Long-term effects of liming on soil chemistry in stable and eroded upland areas in a mining region. Water Air Soil Pollut 224:1–14

    Article  CAS  Google Scholar 

  • Parker MB, Gascho GJ, Gaines TP (1983) Chloride toxicity of soybeans grown on Atlantic coast flatwoods soils. Agron J 75:439–443

    Article  CAS  Google Scholar 

  • Qin R, Hirano Y, Brunner I (2007) Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. Tree Physiol 27:313–320

    Article  CAS  PubMed  Google Scholar 

  • Qureshi MK, Sujeeth N, Gechev TS, Hille J (2013) The zinc finger protein ZAT11 modulates paraquat-induced programmed cell death in Arabidopsis thaliana. Acta Physiol Plant 35:1863–1871

    Article  CAS  Google Scholar 

  • Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, von Wirén N (2006) AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J Biol Chem 281:25532–25540

    Article  CAS  PubMed  Google Scholar 

  • Theriault G, Nkongolo KK, Narendrula R, Beckett P (2013) Molecular and ecological characterisation of plant populations from limed and metal-contaminated sites in Northern Ontario (Canada): ISSR analysis of white birch (Betula papyrifera) populations. Chem Ecol 29(7):573–585

    Article  CAS  Google Scholar 

  • Theriault G, Nkongolo KK, Michael P (2014) Genetic and metal analyses of fragmented populations of Betula papyrifera (Marsh) in a mining reclaimed region: identification of population–diagnostic molecular marker. Ecol Evol 4:3435–3443

    Article  PubMed  PubMed Central  Google Scholar 

  • Theriault G, Nkongolo KK, Michael P (2015) Transcriptome analysis of nickel-resistant and susceptible Betula papyrifera genotypes. In: Proceedings of the annual meeting of American society of agronomy, crop sciences society of America, and soil sciences society of America held in Minneapolis, 16–19 November 2015

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran A, Nkongolo KK, Mehes-Smith M, Narendrula R, Spiers G, Beckett P (2014) Heavy metal analysis in red oak (Quercus rubra) populations from a mining region in northern Ontario (Canada): effect of soil liming and analysis of genetic variation. Am J Environ Sci 10:363–373

    Article  CAS  Google Scholar 

  • Visioli G, Gullì M, Marmiroli N (2014) Noccaea caerulescens populations adapted to grow in metalliferous and non-metalliferous soils: Ni tolerance, accumulation and expression analysis of genes involved in metal homeostasis. Environ Exp Bot 105:10–17

    Article  CAS  Google Scholar 

  • Wang N, Thomson M, Bodles WJ, Crawford RM, Hunt HV, Featherstone AW, Pellicer J, Buggs RJ (2013) Genome sequence of dwarf birch (Betula nana) and cross-species RAPD markers. Mol Ecol 22:3098–3111

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Zhu W, Zhao DX, Miao Q, Xue TT, Li XZ, Zheng CC (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52:585–592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabwe Nkongolo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theriault, G., Michael, P. & Nkongolo, K. Decrypting the regulation and mechanism of nickel resistance in white birch (Betula papyrifera) using cross-species metal-resistance genes. Genes Genom 38, 341–350 (2016). https://doi.org/10.1007/s13258-016-0387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0387-5

Keywords

Navigation