Skip to main content
Log in

New DNA barcodes for identification of Korean birds

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

DNA barcode is a short sequence of standardized genomic region that is specific to a species and therefore, helps in species identification. According to studies of animal species, the 648-bp sequence of the mitochondrial gene encoding cytochrome c oxidase 1 (CO1) is extremely useful for species identification. Several studies of birds have already ascertained the reliability of CO1 barcodes. In this study, we investigated the validity of DNA barcoding in Korean bird species by using additional barcode records. We analyzed the CO1 barcodes of 154 species of Korean birds, and discovered that the average genetic distance between congeneric species was 25 times higher than the average genetic distance within species. Most (98.7 %) bird species possessed a barcode distinct from that of other bird species. However, among the remaining 1.3 %, species had overlapping barcode clusters. Thus, we reemphasize that CO1 barcodes are an effective identification tool for Korean bird species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazin E, Glémin S and Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312: 570–572.

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Yue B, Jiang W, Xie S, Li J and Zhou M (2010) DNA barcoding on subsets of three families in Aves. Mitochondrial DNA 21: 132–137.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson EC (2003) The Howard and Moore Complete Checklist of the Birds of the World. Third Edition. Christopher Helm, London.

    Google Scholar 

  • Donne-Goussé C, Laudet V and Hänni C (2002) A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Mol. Phylogenet. Evol. 23: 339–356.

    Article  PubMed  Google Scholar 

  • Dove CJ, Rotzel NC, Heacker M and Weigt LA (2008) Using DNA barcodes to identify bird species involved in birdstrikes. J. Wildl. Manage. 72: 1231–1236.

    Article  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T and Wilson A (2009) Geneious v4.7. Available from http://www.geneious.com/

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W and Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. U.S.A. 103: 968–971.

    Article  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL and deWaard JR (2003a) Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B. 270: 313–322

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S and deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B. 270Suppl 1: S96–99.

    Article  CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS and Francis CM (2004) Identification of birds through DNA barcode. PLoS Biol. 2: e312.

    Article  PubMed  Google Scholar 

  • Johnsen A, Rindal E, Ericson PGP, Zuccon D, Kerr KCR, Stoeckle MY and Lifjeld JT (2010) DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. J. Ornithol. 151: 565–578.

    Article  Google Scholar 

  • Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN and Tubaro PL (2009) Probing evolutionary patterns in Neotropical birds through DNA barcodes. PLoS ONE 4: e4379.

    Article  PubMed  Google Scholar 

  • Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM and Hebert PDN (2007) Comprehensive DNA barcode coverage of North American birds. Mol. Ecol. Notes 7: 535–543

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kulikova IV, Zhuravlev YN and McCracken KG (2004) Asymmetric hybridization and sex-biased gene flow between eastern spot-billed ducks and mallards in the Russian Far East. The Auk 121: 930–949.

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ and Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Lee HJ, Lee YJ, Kang HM, Jeong OM, Kim MC, Kwon JS, Kwon JH, Kim CB, Lee JB, Park SY, Choi IS and Song CS (2010) DNA barcoding techniques for avian influenza surveillance in migratory bird habitats. J. Wildl. Dis. 46:649–654.

    PubMed  Google Scholar 

  • Lee WS, Koo TH and Park JY (2000) A Field Guide to the Birds of Korea. LB Evergreen Foundation, Seoul, 330 pp.

    Google Scholar 

  • Lohman DJ, Prawiradiraga DM and Meier R (2009) Improved CO1 barcoding primers for Southeast Asian perching birds (Aves: Passeriformes). Mol. Ecol. Resour. 9: 37–40.

    Article  CAS  Google Scholar 

  • Moores N, Park JG and Kim A (2009) The Birds Korea Checklist: 2009. http://www.birdskorea.org

  • Muñoz-fuentes V, Vilà C, Green AJ, Negro JJ and Sorenson MD (2007) Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Mol. Ecol. 16: 629–638.

    Article  PubMed  Google Scholar 

  • Park DS, Kim S and Park SR (1996) A song transition among the geographic populations of bush warbler (Cettia diphon). Korean J. Ecol. 19: 141–149.

    Google Scholar 

  • Peters JL, McCracken KG, Zhuravlev YN, Lu Y, Wilson RE, Johnson KP and Omland KE(2005) Phylogenetics of wigeons and allies (Anatidae: Anas): the importance of sampling multiple loci and multiple individuals. Mol. Phylogenet. Evol. 35: 209–224.

    Article  PubMed  CAS  Google Scholar 

  • Saitou N and Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Phylogenet. Evol. 4: 406–425.

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M and Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Vilaça ST, Lacerda DR, Sari HER and Santos FR (2006) DNA-based identification applied to Thamnopholodae (Passeriformes) speices: the first barcodes of Neotropical birds. Rev Bras Ornitol 14: 7–13.

    Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR and Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360: 1847–1857.

    Article  PubMed  CAS  Google Scholar 

  • Yoo HS, Eah JY, Kim JS, Kim YJ, Min MS, Paek WK, Lee H, and Kim CB (2006) DNA barcoding Korean birds. Mol. Cells 22: 323–327.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Bae Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HY., Yoo, H.S., Jung, G. et al. New DNA barcodes for identification of Korean birds. Genes Genom 33, 91–95 (2011). https://doi.org/10.1007/s13258-010-0089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-010-0089-3

Keywords

Navigation