Scientific Paper

Australasian Physical & Engineering Sciences in Medicine

, Volume 34, Issue 3, pp 361-366

Evaluation of linear array MOSFET detectors for in vivo dosimetry to measure rectal dose in HDR brachytherapy

  • Aisling HaugheyAffiliated withDepartment of Medical Physics, Waikato District Health Board Email author 
  • , George CoalterAffiliated withDepartment of Medical Physics, Waikato District Health Board
  • , Koki MugabeAffiliated withDepartment of Medical Physics, Waikato District Health Board

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The study aimed to assess the suitability of linear array metal oxide semiconductor field effect transistor detectors (MOSFETs) as in vivo dosimeters to measure rectal dose in high dose rate brachytherapy treatments. The MOSFET arrays were calibrated with an Ir192 source and phantom measurements were performed to check agreement with the treatment planning system. The angular dependence, linearity and constancy of the detectors were evaluated. For in vivo measurements two sites were investigated, transperineal needle implants for prostate cancer and Fletcher suites for cervical cancer. The MOSFETs were inserted into the patients’ rectum in theatre inside a modified flatus tube. The patients were then CT scanned for treatment planning. Measured rectal doses during treatment were compared with point dose measurements predicted by the TPS. The MOSFETs were found to require individual calibration factors. The calibration was found to drift by approximately 1% ±0.8 per 500 mV accumulated and varies with distance from source due to energy dependence. In vivo results for prostate patients found only 33% of measured doses agreed with the TPS within ±10%. For cervix cases 42% of measured doses agreed with the TPS within ±10%, however of those not agreeing variations of up to 70% were observed. One of the most limiting factors in this study was found to be the inability to prevent the MOSFET moving internally between the time of CT and treatment. Due to the many uncertainties associated with MOSFETs including calibration drift, angular dependence and the inability to know their exact position at the time of treatment, we consider them to be unsuitable for in vivo dosimetry in rectum for HDR brachytherapy.


MOSFETs In vivo dosimetry Brachytherapy