Skip to main content
Log in

Fluid Mechanics of Mixing in the Vertebrobasilar System: Comparison of Simulation and MRI

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Recent magnetic resonance imaging (MRI) studies have demonstrated that perfusion to the posterior fossa of the brain can be surprisingly unilateral, with specific vascular territories supplied largely by a single vertebral artery (VA) rather than a mixture of the two. It has been hyposthesized that this is due to a lack of mixing in the confluence of the VA into the basilar artery (BA), however the local mechanisms of mixing (or lack thereof) have not been previously examined in detail. This study aims to assess the mixing characteristics and hemodynamics of the vertebrobasilar junction using subject specific computational fluid dynamics (CFD) simulations, and perform quantitative comparisons to arterial spin labeling (ASL) MRI measurements. Subject specific CFD simulations and unsteady particle tracking were performed to quantitatively evaluate vertebrobasilar mixing in four subjects. Phase-contrast MRI was used to assign inflow boundary conditions. A direct comparison of the fractional flow contributions from the VAs was performed against perfusion maps generated via vessel-encoded pseudo-continuous arterial spin labeling (VEPCASL) MRI. The laterality of VA blood supply in 7/8 simulated cerebellar hemispheres and 5/7 simulated cerebral hemispheres agree with ASL data. Whole brain laterality of the VA supply agrees within 5% for measured and computed values for all patients. However, agreement is not as strong when comparing perfusion to individual regions. Simulations were able to accurately predict laterality of VA blood supply in four regions of interest and confirm ASL results, showing that very little mixing occurs at the vertebrobasilar confluence. Additional particle tracking analysis using Lagrangian coherent structures is used to augment these findings and provides further physical insight that complements current in vivo imaging techniques. A quantitative mix-norm measure was used to compare results, and sensitivity analysis was performed to assess changes in the results with pertubations in the boundary condition values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Arzani, A., P. Dyverfeldt, T. Ebbers, and S. C. Shadden. In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation. Ann. Biomed. Eng. 40(4):860–870, 2012.

    Article  Google Scholar 

  2. Bazilevs, Y., M. C. Hsu, D. J. Benson, S. Sankaran, and A. L. Marsden. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput. Mech. 77–89, 2009.

  3. Bazilevs, Y., M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen. A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput. Mech. 46:3–16, 2010. doi:10.1007/s00466-009-0421-4.

    Article  MathSciNet  MATH  Google Scholar 

  4. Boussel, L., V. Rayz, A. Martin, G. Acevedo-Bolton, M. T. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn. Reson. Med. 61(2):409–417, 2009.

    Article  Google Scholar 

  5. Brooks, A. N., and T. J. R. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 1982.

  6. Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26:2550–2559, 2005.

    Google Scholar 

  7. Chen, Y., D. J. J. Wang, and J. A. Detre. Testretest reliability of arterial spin labeling with common labeling strategies. J. Mag. Reson. Imaging 33(4):940–949, 2011.

    Google Scholar 

  8. Colton, C. K., K. A. Smith, E. R. Merrill, and S. Friedman. Diffusion of urea in flowing blood. AIChE J. 17(4):800–808, 1971.

    Google Scholar 

  9. Davies, N. P., and P. Jezzard. Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn. Reson. Med. 49(6):1133–1142, 2003.

    Article  Google Scholar 

  10. del Alamo, J. C., A. L. Marsden, and J. C. Lasheras. Recent advances in the application of computational mechanics to the diagnosis and treatment of cardiovascular disease. Revista Espanola De Cardiologia 781–805, 2009.

  11. Detre, J. A., J. S. Leigh, D. S. Williams, and A. P. Koretsky. Perfusion imaging. Magn. Reson. Med. 23(1):37–45, 1992.

    Article  Google Scholar 

  12. Eastwood, J. D., C. A. Holder, P. A. Hudgins, and A. W. Song. Magnetic resonance imaging with lateralized arterial spin labeling. Magn. Reson. Imaging 20(8):583–586, 2002.

    Article  Google Scholar 

  13. Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26(4):477–488, 2005.

    Article  Google Scholar 

  14. Gunther, M. Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn. Reson. Med. 56(3):671–675, 2006

    Article  Google Scholar 

  15. Hendrikse, J., J. van der Grond, H. Lu, P. C. van Zijl, and X. Golay. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35(4):882–887, 2004.

    Article  Google Scholar 

  16. Jansen, K. E., C. H. Whiting, and G. M. Hulbert. A generalized method for integrating the filtered navierstokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190(34):305–319, 2000.

    Google Scholar 

  17. Kansagra, A. P., and E. C. Wong. Mapping of vertebral artery perfusion territories using arterial spin labeling MRI. J. Magn. Reson. Imaging 28(3):762–766, 2008.

    Article  Google Scholar 

  18. Kansagra, A. P., and E. C. Wong. Characterization of vascular territory changes following carotid artery compression using arterial spin labeling MRI. 2009.

  19. Krijger, J. K., B. Hillen, and H. W. Hoogstraten. Mathematical models of the flow in the basilar artery. J. Biomech. 22(11–12):1193–1202, 1989.

    Article  Google Scholar 

  20. Krijger, J. K., R. M. Heethaar, B. Hillen, H. W. Hoogstraten, and J. Ravensbergen. Computation of steady three-dimensional flow in a model of the basilar artery. J. Biomech. 25(12):1451–1465, 1992.

    Article  Google Scholar 

  21. Ku, J. P., M. T. Draney, F. R. Arko, W. A. Lee, F. P. Chan, N. J. Pelc, C. K. Zarins, and C. A. Taylor. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann. Biomed. Eng. 30(6):743–52, 2002.

    Article  Google Scholar 

  22. Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33(3):257–269, 2005.

    Article  Google Scholar 

  23. Kung, E., A. Les, C. Figueroa, F. Medina, K. Arcaute, R. Wicker, M. McConnell, and C. Taylor. In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39:1947–1960, 2011. 10.1007/s10439-011-0284-7.

    Google Scholar 

  24. Long C. C., M.-C. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluidstructure interaction simulations of the fontan procedure using variable wall properties. Int. J. Numer. Methods Biomed. Eng. 28(5):513–527, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lonyai, A., A. Dubin, J. Feinstein, C. Taylor, and S. Shadden. New insights into pacemaker lead-induced venous occlusion: simulation-based investigation of alterations in venous biomechanics. Cardiovasc. Eng. 84–90, 2010.

  26. Lutz, R. J., K. Warren, F. Balis, N. Patronas, and R. L. Dedrick. Mixing during intravertebral arterial infusions in an in vitro model. J. Neurooncol. 58(2):95–106, 2002.

    Article  Google Scholar 

  27. Marsden, A. L., M. Wang, J. E. Dennis, and P. Moin. Optimal aeroacoustic shape design using the surrogate management framework. Optimiz. Eng. 235–262, 2004.

  28. Marsden, A. L., A. J. Bernstein, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Large differences in efficiency among Fontan patients demonstrated in patient specific models of blood flow simulations. Circulation 480–480, 2007.

  29. Marsden, A. L., I. E. Vignon-Clementel, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 250–263, 2007.

  30. Marsden, A. L., M. Wang, J. E. Dennis, and P. Moin. Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J. Fluid Mech. 13–36, 2007.

  31. Marsden, A. L., J. A. Feinstein, and C. A. Taylor. A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 1890–1905, 2008.

  32. Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel Y-shaped extracardiac fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 394–U187, 2009.

  33. Marsden, A. L., V. M. Reddy, S. C. Shadden, F. P. Chan, C. A. Taylor, and J. A. Feinstein. A new multiparameter approach to computational simulation for fontan assessment and redesign. Congenit. Heart Dis. 5(2):104–117, 2010.

    Article  Google Scholar 

  34. Mathew, G., L. Petzold, and S. Serban. Computational techniques for quantification and optimization of mixing in microfluidc devices. 2002.

  35. Mathew, G., I. Mezić, and L. Petzold. A multiscale measure for mixing. Phys. D: Nonlinear Phenom. 2005.

  36. Sankaran, S., C. Audet, and A. L. Marsden. A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation. J. Comput. Phys. 4664–4682, 2010.

  37. Sankaran, S., and A. L. Marsden. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng. 133(3):031001, 2011

    Article  Google Scholar 

  38. Schmidt, J. P., S. L. Delp, M. A. Sherman, C. A. Taylor, V. S. Pande, and R. B. Altman. The simbios national center: systems biology in motion. Proc. IEEE Inst. Electr. Electron. Eng. 96(8):1266, 2008

    Google Scholar 

  39. Shadden, S .C., and C.A. Taylor (2008) Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36(7):1152–1162.

    Article  Google Scholar 

  40. Shadden, S. C., F. Lekien, and J. E. Marsden. Definition and properties of lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodicflows. Phys. D: Nonlinear Phenom. 212(34):271–304, 2005.

    Google Scholar 

  41. Shadden, S. C., and V. C. Flow. (Version 1) [Computer Software]. http://mmae.iit.edu/shadden/software/, 2010.

  42. Spilt, A., F. M. A. Box, R. J. van der Geest, J. H. C. Reiber, P. Kunz, A. M. Kamper, G. J. Blauw, and Mark A. van Buchem. Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J. Magn. Reson. Imaging 16(1):1–5, 2002.

  43. Steinman D. A., J. S. Milner, C. J. Norley, S. P.Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroradiol. 24:559–566, 2003.

    Google Scholar 

  44. Vignon-Clementel I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13(5):625–640, 2010.

    Article  Google Scholar 

  45. Wentland, A. L., O. Wieben, F. R. Korosec, and V. M. Haughton. Accuracy and reproducibility of phase-contrast mr imaging measurements for csf flow. Am. J. Neuroradiol. 31:1331–1336, 2010.

    Article  Google Scholar 

  46. Werner, R., K. Alfke, T. Schaeffter, A. Nabavi, H. M. Mehdorn, and O. Jansen. Brain perfusion territory imaging applying oblique-plane arterial spin labeling with a standard send/receive head coil. Magn. Reson. Med. 52(6):1443–1447, 2004.

    Article  Google Scholar 

  47. Werner, R., D. G. Norris, K. Alfke, H. M. Mehdorn, and O. Jansen. Continuous artery-selective spin labeling (CASSL). Magn. Reson. Med. 53(5):1006–1012, 2005.

    Article  Google Scholar 

  48. Williams, D. S., J. A. Detre, J. S. Leigh, and A. P. Koretsky. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl Acad. Sci. USA. 89(1):212–216, 1991.

    Article  Google Scholar 

  49. Wong, E. C. Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn. Reson. Med. 58(6):1086–1091, 2007.

    Article  Google Scholar 

  50. Yang, W. G., J. A. Feinstein, and A. L. Marsden. Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise. Comput. Methods Appl. Mech. Eng. 2135–2149, 2010.

  51. Yang, W., I. E. Vignon-Clementel, G. Troianowski, V. M. Reddy, J. A. Feinstein, and A. L. Marsden. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012.

    Article  Google Scholar 

  52. Zaharchuk, G., P. J. Ledden, K. K. Kwong, T. G. Reese, B. R. Rosen, and L. L. Wald. Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn. Reson. Med. 41(6):1093–1098, 1999.

    Article  Google Scholar 

  53. Zimine, I., E. T. Petersen, and X. Golay. Dual vessel arterial spin labeling scheme for regional perfusion imaging. Magn. Reson. Med. 56(5):1140–1144, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by a Burroughs Wellcome Fund Career Award at the Scientific Interface, a UCSD Collaboratories Grant and NIH grant R01EB002096. The authors gratefully acknowledge the use of software from the Simvascular open source project (simtk.org), and the convection-diffusion code written by Mahdi Esmaily Moghadam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Marsden.

Additional information

Communicated by Stephen B. Knisley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockman, M.D., Kansagra, A.P., Shadden, S.C. et al. Fluid Mechanics of Mixing in the Vertebrobasilar System: Comparison of Simulation and MRI. Cardiovasc Eng Tech 3, 450–461 (2012). https://doi.org/10.1007/s13239-012-0112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-012-0112-8

Keywords

Navigation