, Volume 2, Issue 3, pp 335-345,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 26 May 2012

Evolutionary Games and Periodic Fitness

Abstract

One thing that nearly all stability concepts in evolutionary game theory have in common is that they use a time-independent fitness matrix. Although this is a reasonable assumption for mathematical purposes, in many situations in real life it seems to be too restrictive. We present a model of an evolutionary game, driven by replicator dynamics, where the fitness matrix is a variable rather than a constant, i.e., the fitness matrix is time-dependent. In particular, by considering periodically changing fitness matrices, we model seasonal effects in evolutionary games. We discuss a model with a continuously changing fitness matrix as well as a related model in which the changes occur periodically at discrete points in time. A numerical analysis shows stability of the periodic orbits that are observed. Moreover, trajectories leading to these orbits from arbitrary starting points synchronize their motion in time. Several examples are discussed.