Skip to main content
Log in

Fabrication and structural characterization of electrospun nanofibres from Gonometa Postica and Gonometa Rufobrunnae regenerated silk fibroin

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We report the fabrication and characterization of electrospun nanofibres from Gonometa postica and Gonometa rufobrunnae silk fibroin indigenous to Southern Africa. Nanofibres were electrospun from regenerated silk fibroin (RSF) powders obtained by freeze drying or via rotary evaporation using methanol as a desiccant. Optimal electrospinning conditions employed trifluoroacetic acid as a solvent. The solution of RSF powder prepared by rotary evaporation was electrospun at a lower concentration (27% w/v) than that of freeze dried RSF powder (40% w/v). Concentration of the fibroin solution had the most influence on electrospinnability whereas voltage and flow rate mainly affected the fibre morphology. Scanning electron microscopy (SEM) showed that nanofibres from freeze dried and rotary evaporator dried RSF powders had diameters ranging from 300–760 and 400–1,000 nm respectively. Fourier transform infrared (FTIR) analysis revealed that the RSF powders were mainly composed of β-sheets, similar to degummed silk fibroin. The nanofibres, however, exhibited predominantly random coil/α-helical structure showing degradation of the native silk structure. β-sheet structure in the nanofibres was restored upon solvent treatment resulting in improved water stability. The extent of structural transformation was dependent on the type of solvent used. This study confirms the feasibility of fabricating Gonometa fibroin into stable nanofibrous structures that could be used as scaffolds in biotechnological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Zhang, Adv. Drug Deliver. Rev., 61, 988 (2009).

    Article  CAS  Google Scholar 

  2. W. Friess, Eur. J. Pharm. Biopharm., 45, 113 (1998).

    Article  CAS  Google Scholar 

  3. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).

    Article  CAS  Google Scholar 

  4. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007).

    Article  CAS  Google Scholar 

  5. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  6. J. D. Schiffman and C. L. Schauer, Polym. Rev., 48, 317 (2008).

    Article  CAS  Google Scholar 

  7. J. K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo, and S. Ramakrishna, J. Nanosci. Nanotechnol., 4, 52 (2004).

    CAS  Google Scholar 

  8. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Eng., 11, 101 (2005).

    Article  Google Scholar 

  9. Y. Tamada, Biomacromolecules, 6, 3100 (2005).

    Article  CAS  Google Scholar 

  10. E. Wenk, A. J. Meinel, S. Wildy, H. P. Merkle, and L. Meinel, Biomaterials, 30, 2571 (2009).

    Article  CAS  Google Scholar 

  11. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004).

    Article  CAS  Google Scholar 

  12. L. Soffer, X. Wang, X. Zhang, J. Kluge, L. Dorfmann, D. L. Kaplan, and G. Leisk, J. Biomater. Sci. Polym. Ed., 19, 653 (2008).

    Article  CAS  Google Scholar 

  13. K. H. Kim, L. Jeong, H. N. Park, S. Y. Shin, W. H. Park, S. C. Lee, T. I. Kim, Y. J. Park, Y. J. Seol, Y. M. Lee, Y. Ku, I. C. Rhyu, S. B. Han, and C. P. Chung, J. Biotechnol., 120, 327 (2005).

    Article  CAS  Google Scholar 

  14. Y. Srisuwan and P. Srihanam, J. Appl. Sci., 9, 978 (2009).

    Article  CAS  Google Scholar 

  15. K. Ohgo, C. Zhao, M. Kobayashi, and T. Asakura, Polymer, 44, 841 (2003).

    Article  CAS  Google Scholar 

  16. F. Zhang, B. Q. Zuo, H. X. Zhang, and L. Bai, Polymer, 50, 279 (2009).

    Article  CAS  Google Scholar 

  17. C. Meechaisue, P. Wutticharoenmongkol, R. Waraput, T. Huangjing, N. Ketbumrung, P. Pavasant, and P. Supaphol, Biomed. Mater., 2, 181 (2007).

    Article  CAS  Google Scholar 

  18. V. Mhuka, S. Dube, and M. M. Nindi, Int. J. Biol. Macromol., DOI: 10.1016/j.ijbiomac.2012.09.010 (2012).

    Google Scholar 

  19. G. Freddi, A. B. Svilokos, H. Ishikawa, and M. Tsukada, J. Appl. Polym. Sci., 48, 99 (1993).

    Article  CAS  Google Scholar 

  20. A. De’r, L. Kelemen, L. Fábián, S. G. Taneva, E. Fodor, T. Páli, A. Cupane, M. G. Cacace, and J. J. Ramsden, J. Phys. Chem. B, 111, 5344 (2007).

    Article  Google Scholar 

  21. K. D. Collins, Methods, 34, 300 (2004).

    Article  CAS  Google Scholar 

  22. W. N. L. Zhang, Y. Wenhua, and X. Shiying, J. Chin. Inst. Food Sci. Technol., 1, 56 (2001).

    Google Scholar 

  23. Y. Miyaguchi and J. Hu, Food Sci. Technol. Res., 11, 3742 (2005).

    Article  Google Scholar 

  24. A. S. Bommarius and B. R. Riebel, in Biocatalysis: Fundamentals and Applications, Wiley, New York, 2004, p 228.

    Google Scholar 

  25. D. H. Reneker and I Chun, Nanotechnology, 7, 36 (1996).

    Article  Google Scholar 

  26. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer, 42, 261 (2001).

    Article  CAS  Google Scholar 

  27. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Mater. Res., 14, 317 (2011).

    Article  CAS  Google Scholar 

  28. Z W. Zhou, J. He, S. Cui, and W. Gao, Open Mater. Sci. J., 5, 51 (2011).

    Article  Google Scholar 

  29. S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, Polymer, 46, 6128 (2005).

    Article  CAS  Google Scholar 

  30. X. H. Zong, K. Kim, B. S. Hsiao, and S. F. Ran, Polymer, 43, 4403 (2002).

    Article  CAS  Google Scholar 

  31. E. R. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A Matthews, and D. G. Simpson, Biomaterials, 24, 907 (2003).

    Article  CAS  Google Scholar 

  32. M. Tsukada, G. Freddi, Y. Gotoh, and N. Kasai, J. Polym. Sci. Part B: Polym. Phys., 32, 1407 (1994).

    Article  CAS  Google Scholar 

  33. A. L. Andrady, in Science and Technology of Polymer Nanofibers, John Wiley & Sons, Hoboken, 2007, p 105.

    Google Scholar 

  34. B. Marelli, A. Alessandrino, S. Farè, G. Freddi, D. Mantovani, and M. C. Tanzi, Acta Biomater., 6, 4019 (2010).

    Article  CAS  Google Scholar 

  35. M. Min, L. Jeong, K.Y. Lee, and W. H. Park, Macromol. Biosci., 6, 285 (2006).

    Article  CAS  Google Scholar 

  36. H. Kweon and Y. H. Park, J. Appl. Polym. Sci., 82, 750 (2001).

    Article  CAS  Google Scholar 

  37. P. Wadbua, B. Promdonkoy, S. Maensiri, and S. Siri, Int. J. Biol. Macromol., 46, 493 (2010).

    Article  CAS  Google Scholar 

  38. W. Wei, Y. Zhang, H. Shao, and X. Hu, J. Mater. Res., 26, 1100 (2011).

    Article  CAS  Google Scholar 

  39. W. Tao, M. Li, and C. Zhao, Int. J. Biol. Macromol., 10, 472 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simiso Dube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mhuka, V., Dube, S., Nindi, M.M. et al. Fabrication and structural characterization of electrospun nanofibres from Gonometa Postica and Gonometa Rufobrunnae regenerated silk fibroin. Macromol. Res. 21, 995–1003 (2013). https://doi.org/10.1007/s13233-013-1127-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1127-1

Keywords

Navigation