Skip to main content

Advertisement

Log in

Diversity of fungal endophytes from the medicinal plant Dendropanax arboreus in a protected area of Mexico

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

With the aim of studying the biodiversity and the biotechnological potential of endophytic fungi associated with the medicinal plant Dendropanax arboreus, 45 fungal isolates were recovered from ten plants grown at the “El Cielo” Biosphere Reserve, Mexico. Based on the sequence analysis of internal transcribed spacer (ITS) regions and the observation of morphological traits, the isolates were grouped into 28 genotypes corresponding to 14 genera with a predominance of Fusarium, Phomopsis, Alternaria, and Colletotrichum species. Enzymatic activity assays revealed numerous isolates as having xylanase (66.6 %), cellulase (57.1 %), pectinase (51.2 %), and amylase (20.9 %) activities. Only the isolate Paecilomyces sp. HER3-5 exhibited chitinase and chitosanase activities, and only the unidentified isolate HET1-5 had phosphate solubilization capacity. Isolates of five fungal genera had antimicrobial activity against at least one among the Staphylococcus aureus, Candida albicans, and Candida glabrata target strains. To the best of our knowledge, this is the first study on the endophytic fungi of D. arboreus, and provides evidence that: (1) endophytes commonly produce enzymes associated with the colonization process (xylanases, cellulases, and pectinases), while enzymes associated with pathogenic infection (amylases) or phosphate solubilization were relatively rare; (2) isolates of the genera Corynespora, Endomelanconiopsis, and Thozetella are potential sources of novel antimicrobial compounds; and (3) distinctive endophytic fungal communities occur in different plant tissues (the root, trunk, and leaf), but this was less evident in the sampling sites (elevation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–g
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allers T, Lichten M (2000) A method for preparing genomic DNA that restrains branch migration of holiday junctions. Nucleic Acids Res 28:e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpinia P, Haw C, Sunitha VH et al (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata. Braz J Microbiol 43:1213–1221

    Article  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Baral B, Rana P, Maharjan BL (2011) Antimicrobial potentials of endophytic fungi inhabiting Rhododendron anthopogon D. Don. Ecoprint 18:39–44

    Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  • Bourdy G, DeWalt SJ, Chávez De Michel LR et al (2000) Medicinal plants uses of the Tacana, an Amazonian Bolivian ethnic group. J Ethnopharmacol 70:87–109

    Article  CAS  PubMed  Google Scholar 

  • Brundett M (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz B, Boyle C, Sieber TN (eds) Soil biology, vol 9: microbial root endophytes. Springer, Berlin, pp 281–298

  • Calcul L, Waterman C, Ma WS, Lebar MD, Harter C et al (2013) Screening mangrove endophytic fungi for antimalarial natural products. Mar Drugs 11:5036–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo Lopez D, Zhu-Salzman K, Ek-Ramos MJ, Sword GA (2014) The entomopathogenic fungal endophytes Purpureocillium lilacinum (Formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9(8):e103891. doi:10.1371/journal.pone.0103891

    Article  PubMed  PubMed Central  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. http://viceroy.eeb.uconn.edu/EstimateS

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Figueroa-Esquivel EM, Puebla-Olivares F, Eguiarte LE, Núñez-Farfán J (2010) Genetic structure of a bird-dispersed tropical tree (Dendropanax arboreus) in a fragmented landscape in Mexico. Rev Mex Biodivers 81:789–800

    Google Scholar 

  • Fu J, Zhou Y, Li H-F, Ye Y-H, Guo J-H (2011) Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. Afr J Microbiol Res 5:1231–1236

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes- application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS et al (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53

    Article  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Washington University

  • Guindon S, Gascuel O (2003) A simple and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han M, Liu T, Cai X et al (2012) A new endophytic Paraconiothyrium brasiliens LT161 shows potential in producing antifungal metabolites against phytopathogens. Afr J Microbiol Res 6:7572–7578

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang S-M et al (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3. doi:10.1186/1471-2180-12-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knogge W (1996) Fungal infection of plants. Plant Cell 8:1711–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Lane GA, Christensen MJ, Miles CO (2000) Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Dekker, New York, pp 341–388

    Google Scholar 

  • Larran S, Perello A, Simon RM, Moreno V (2002) Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J Microbiol Biotechnol 18:683–686

    Article  CAS  Google Scholar 

  • Lin T, Lin X, Lu C, Shen Y (2011) Secondary metabolites of Pyrenochaeta sp. B36, an endophytic fungus from Annona squamosa L. Nat Prod Res 25:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Lumyong S, Techa W, Lumyong P, McKenzie EHC, Hyde KD (2009) Endophytic fungi from Calamus kerrianus and Wallichia caryotoides (Arecaceae) at Doi Suthep-Pui National Park, Thailand. Chiang Mai J Sci 36:158–167

    Google Scholar 

  • Lv Y, Zhang F, Chen J, Cui JL, Xing YM, Li XD, Shun G (2010) Diversity and antimicrobial activity of endophytic fungi associated with the alpine plant Saussurea involucrata. Biol Pharm Bull 33:1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2015) Vegan community ecology package: ordination methods, diversity analysis and other functions for community and vegetation ecologists. Version 2.3-1. https://github.com/vegandevs/vegan

  • Ortega HE, Graupner PR, Asai Y et al (2013) Mycoleptodiscins A and B, cytotoxic alkaloids from the endophytic fungus Mycoleptodiscus sp. F0194. J Nat Prod 76:741–744

    Article  CAS  PubMed  Google Scholar 

  • Park Y-H, Lee S-G, Ahn DJ, Kwon TR, Park SU, Lim H-S, Bae H (2012) Diversity of fungal endophytes in various tissues of Panax ginseng Meyer cultivated in Korea. J Ginseng Res 36:211–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul NC, Kim WK, Woo SK, Park MS, Yu SH (2007) Fungal endophytes in roots of Aralia species and their antifungal activity. Plant Pathol J 23:287–294

    Article  Google Scholar 

  • Paulus B, Hyde K (2004) Phylogenetic and morphological assessment of five new species Thozetella from an Australian rainforest. Mycologia 96:1074–1087

    Article  PubMed  Google Scholar 

  • Petrini O, Fisher PJ (1986) A comparative study of fungal endophytes in xylem and whole stems of Pinus sylvestris and Fagus sylvatica. Trans Br Mycol Soc 91:233–238

    Article  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, Hyde KD (2001) Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand. Mycol Res 105:1508–1503

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Promputtha I, Lumiyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Rajesh J (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    Article  PubMed  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/

  • Reyes-Estebanez M, Herrera-Parra E, Cristóbal-Alejo J et al (2011) Antimicrobial and nematicidal screening of anamorphic fungi isolated from plant debris of tropical areas in Mexico. Afr J Microbiol Res 5:1083–1108

    Google Scholar 

  • Rodrigues KF, Sieber TN, Grünig CR, Holdenrieder O (2004) Characterization of Guignardia mangiferae isolated from tropical plants based on morphology, ISSR-PCR amplifications and ITS1-5.8S-ITS2 sequences. Mycol Res 108:45–52

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Tovar AV, Ruiz-Medrano R, Herrera-Martínez A et al (2005) Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius. J Microbiol Methods 63:45–54

    Article  PubMed  Google Scholar 

  • Rojas EI, Herre EA, Mejía LC et al (2008) Endomelanconiopsis, a new anamorph genus in the Botryosphaeriaceae. Mycologia 100:760–775

    Article  PubMed  Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AW, Maki CS, Cacau A (2005) Diversity of endophytic fungal community of cacao (Theobroma). Int J Biol Sci 1:24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Seifert KA, Morgan-Jones G, Gams W, Kendrick WB (2011) The genera of hyphomycetes. [CBS Biodiversity Series no. 9.] Utrecht: CBS-KNAW Fungal Biodiversity Centre

  • Setzer WN, Gu X, Wells EB et al (2000) Synthesis and cytotoxic activity of a series of diacetylenic compounds related to falcarindiol. Chem Pharm Bull 48:1776–1777

    Article  CAS  PubMed  Google Scholar 

  • Silva GH, Teles HL, Zanardi LM et al (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67:1964–1969

    Article  CAS  PubMed  Google Scholar 

  • Socca-Chafre G, Rivera-Orduña FN, Hidalgo-Lara ME, Hernandez-Rodriuez C, Marsch R, Flores-Cotera LB (2011) Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol 2:142–156

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687, doi:10.1155/2012/713687

  • Zhao DL, Shao CL, Gan LS et al (2015) Chromone derivatives from a sponge-derived strain of the fungus Corynespora cassiicola. J Nat Prod 78:286–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported financially through the projects SIP20100067, SIP20110424, and SIP 20120760 [La Secretaria de Educación Pública-Instituto Politécnico Nacional (SIP-IPN)]. J.R.G. received a student scholarship from Consejo Nacional De Ciencia Y Tecnología (CONACYT)-Mexico and Programa Institucional de Formación de Investigadores (PIFI)-IPN. We are indebted to Dr. Arturo Mora Olivo of Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, for his help in finding and identifying D. arboreus plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En Tao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Garza, J., Rodríguez-Tovar, A.V., Flores-Cotera, L.B. et al. Diversity of fungal endophytes from the medicinal plant Dendropanax arboreus in a protected area of Mexico. Ann Microbiol 66, 991–1002 (2016). https://doi.org/10.1007/s13213-015-1184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1184-0

Keywords

Navigation