Skip to main content
Log in

An in vitro microfluidic gradient generator platform for antimicrobial testing

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Methicillin Resistant Staphylococcus pseudintermedius (MRSP) biofilm-related infections are currently a leading concern for veterinary hospitals, as these types of infections are highly resistant to assaults by both the immune system and antimicrobial therapies, impeding their clearance. Research suggests that fosfomycin, a low molecular weight bactericidal antibiotic, has the potential to effectively penetrate and subsequently disrupt/destroy biofilm layers. Our study utilized a fabricated microfluidic gradient generator platform as an assay to perform a quantitative assessment of varying concentrations of a selected antimicrobial agent against MRSP biofilm formed under physiologically relevant conditions. Our results verified the feasibility of using a microfluidic device for rapid antimicrobial testing against biofilms, which was successful in demonstrating that fosfomycin is an effective agent that can disrupt established MRSP biofilms. Additionally, Atomic Force Microscopy (AFM) analysis revealed that the cell walls of MRSP cells within the biofilms were disrupted by fosfomycin treatment, which speaks to the mechanism of action and the antimicrobial efficacy of this agent. This study provides compelling evident that microfluidic device and nanoscale AFM imaging-based investigations of biofilms can aid in the study of biofilm-related infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weese, J.S. A review of multidrug resistant surgical site infections. Vet. Comp. Orthop. Traumatol. 21, 1– (2008).

    CAS  Google Scholar 

  2. Vasseur, P.B., Levy, J., Dowd, E. & Eliot, J. Surgical wound infection rates in dogs and cats data from a teaching hospital. Vet. Surg. 17, 60–4 (1988).

    Article  CAS  Google Scholar 

  3. Nicholson, M., Beal, M., Shofer, F. & Brown, D.C. Epidemiologic evaluation of postoperative wound infection in clean-contaminated wounds: A retrospective study of 239 dogs and cats. Vet. Surg. 31, 577–81 (2002).

    Article  Google Scholar 

  4. Eugster, S., Schawalder, P., Gaschen, F. & Boerlin, P. A prospective study of postoperative surgical site infections in dogs and cats. Vet. Surg. 33, 542–50 (2004).

    Article  Google Scholar 

  5. Parra-Ruiz, J., Vidaillac, C., Rose, W.E. & Rybak, M.J. Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination with clarithromycin or rifampin in a novel in vitro model of Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 54, 4329–334 (2010).

    Article  CAS  Google Scholar 

  6. Klapper, I., Rupp, C.J., Cargo, R., Purvedorj, B. & Stoodley, P. Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol. Bioeng. 80, 289–96 (2002).

    Article  CAS  Google Scholar 

  7. Fujimura, S. et al. Combined efficacy of clarithromycin plus cefazolin or vancomycin against Staphylococcus aureus biofilms formed on titanium medical devices. Int. J. Antimicrob. Agents 32, 481–84 (2008).

    Article  CAS  Google Scholar 

  8. Gortel, K. et al. Methicillin resistance among staphylococci isolated from dogs. Am. J. Vet. Res. 60, 1526–530 (1999).

    CAS  Google Scholar 

  9. Vengust, M., Anderson, M.E., Rousseau, J. & Weese, J.S. Methicillin-resistant staphylococcal colonization in clinically normal dogs and horses in the community. Lett. Appl. Microbiol. 43, 602–06 (2006).

    Article  CAS  Google Scholar 

  10. Weese, J.S. A review of post-operative infections in veterinary orthopaedic surgery. Vet. Comp. Orthop. Traumatol. 21, 99–05 (2008).

    CAS  Google Scholar 

  11. Chrobak, D. et al. Molecular characterization of Staphylococcus pseudintermedius strains isolated from clinical samples of animal origin. Folia Microbiol. (Praha) 56, 415–22 (2011).

    Article  CAS  Google Scholar 

  12. Mikuniya, T. et al. Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J. Infect. Chemother. 13, 285–90 (2007).

    Article  CAS  Google Scholar 

  13. Kusachi, S., Nagao, J., Yoshihisa, S. & Watanabe, M. Antibiotic time-lag combination therapy with fosfomycin for postoperative intra-abdominal abcesses. J. Infect. Chemother. 17, 91–6 (2011).

    Article  CAS  Google Scholar 

  14. Kumon, H., Ono, N., Iida, M. & Nickel, J.C. Combination effect of fosfoymcin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob. Agents Chemother. 39, 1038–044 (1995).

    Article  CAS  Google Scholar 

  15. Kumar, A. et al. Microscale confinement features can affect biofilm formation. Microfluid Nanofluidi. 14, 895–02 (2013).

    Article  Google Scholar 

  16. Dicicco, M., Neethirajan, S., Weese, J.S. & Singh, A. In vitro synergism of fosfomycin and clarithromycin antimicrobials against methicillin-resistant. Staphylococcus pseudintermedius. BMC Microbiol. 16473671 91113294 (2014).

    Google Scholar 

  17. Purevdorj, B., Costerton, J.W. & Stoodley, P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68, 4457–464 (2002).

    Article  CAS  Google Scholar 

  18. Weaver, W.M., Dharmaraja, S., Milisavljevic, V. & Di Carlo, D. The effects of shear stress on isolated receptor-ligand interactions of Staphylococcus epidermidis and human plasma fibrinogen using molecularly patterned microfluidics. Lab Chip 11, 883–89 (2011).

    Article  CAS  Google Scholar 

  19. Lin, F. & Saadi, W. Generation of dynamic temporal and spatial concentration gradient using microfluidic devices. Lab Chip 4, 164–67 (2004).

    Article  CAS  Google Scholar 

  20. Neethirajan, S. & DiCicco, M. Atomic force microscopy study of the antibacterial effect of fosfomycin on methicillin-resistant Staphylococcus pseudintermedius. App. Nanosci. doi:10.1007/s13204-013-0256-3 (2013).

    Google Scholar 

  21. Kim, S.P. et al. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip 10, 3296–299 (2010).

    Article  CAS  Google Scholar 

  22. Osland, A.M., Vestby, L.K., Fanuelsen, H., Slettemeas, J.S. & Sunde, M. Clonal diversity and biofilm-forming ability of methicillin-resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 67, 841–48 (2012).

    Article  CAS  Google Scholar 

  23. Jenks, P.S., Laurent, M., Mcquarry, S. & Watkins, R. Clinical and economic burden of surgical site infection (SSI) and predicted financial consequences of elimination of SSI from an English hospital. J. Hospital. Infection. 86, 24–3 (2014).

    Article  CAS  Google Scholar 

  24. Stewart, P.S. Convection around biofilms. Biofouling: J. Bioadhe. Biofilm Res. 28, 187–98 (2012).

    Article  Google Scholar 

  25. Toh, A.G.G., Wang, Z.P., Yang, C. & Nguyen, N. Engineering microfluidic concentration gradient generators for biological applications. Microfluid. Nanofluid. 16, 1018 (2014).

    Article  Google Scholar 

  26. Selimovic, S. et al. Generating nonlinear concentration gradients in microfluidic devices for cell studies. Anal. Chem. 83, 2020–028 (2011).

    Article  CAS  Google Scholar 

  27. Richter, L. et al. Monitoring cellular stress repsonses to nanoparticles using a lab-on-a-chip. Lab Chip. 11, 2551–560 (2011).

    Article  CAS  Google Scholar 

  28. Nauman, E.A. et al. Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Appl. Environ. Microbiol. 73, 699–05 (2007).

    Article  CAS  Google Scholar 

  29. Beeson, J.G. et al. Adhesion of plasmodium falciparum- infected erythrocytes to hyaluronic acid in placental malaria. Nat. Med. 6, 86–0 (2000).

    Article  CAS  Google Scholar 

  30. Ceri, H. et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37, 1771–776 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Neethirajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiCicco, M., Neethirajan, S. An in vitro microfluidic gradient generator platform for antimicrobial testing. BioChip J 8, 282–288 (2014). https://doi.org/10.1007/s13206-014-8406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-8406-6

Keywords

Navigation