Skip to main content
Log in

Identification and characterization of flowering repressor-related genes in Chinese cabbage

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

In this study, we used a five-step process to identify those genes most likely involved in flowering repression in the Chinese cabbage (Brassica rapa). We tested 6,275 candidate genes with 300K microarrays, which included specific gene expression profiles of FLOWERING LOCUS C (FLC) mutants and normal cultivars during five cold vernalization stages. From that, we identified 289 transcription factor genes and 59 pathway network genes associated with floweringrelated metabolism. Then we compared the 348 genes to 1,287 genes from Gene Ontology and Clusters of Orthologous Groups analyses, which use similar orthologs to categorize conserved genes. Those analyses revealed 10 hypothetical genes for B. rapa, which we verified by reverse transcription-polymerase chain reaction. The final selected genes most likely play regulatory roles in either B. rapa flowering time control or flowering repression during vernalization. While these final genes require further characterization and validation, our study illustrates the usefulness of a multi-layered screening method after initially identifying genes from microarrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanda, S.L. & Amasino, R.M. Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111, 641–645 (1996).

    CAS  Google Scholar 

  2. Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soppe, W. & Peeters, T. The phenotype of some lateflowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J. 6, 911–919 (1994).

    Article  CAS  Google Scholar 

  3. Lee, I. & Amasino, R.M. Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol. 108, 157–162 (1995).

    CAS  Google Scholar 

  4. Michaels, S.D. & Amasino, R.M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999).

    CAS  Google Scholar 

  5. Sheldon, C.C. et al. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445–458 (1999).

    CAS  Google Scholar 

  6. He, Y. & Amasino, R.M. Role of chromatin modification in flowering time control. Trends Plant Sci. 10, 30–35 (2005).

    Article  CAS  Google Scholar 

  7. Osborn, T.C. et al. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146, 1123–1129 (1997).

    CAS  Google Scholar 

  8. Kim, S.Y. et al. Delayed flowering time in Arabidopsis and Brassica rapa by the over expression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L.: ssp. pekinensis). Plant Cell Rep. 26, 327–336 (2007).

    Article  CAS  Google Scholar 

  9. Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J. & Dennis, E.S. The molecular basis of vernalization: the control role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. 97, 3753–3758 (2000).

    Article  CAS  Google Scholar 

  10. Deng, W. et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc. Natl. Acad. Sci. 108, 6680–6685 (2011).

    Article  CAS  Google Scholar 

  11. Kim, C.K. et al. Identification and characterization of seed-specific transcription factors regulating anthocyanin biosynthesis in black rice. J. Appl. Genetics 52, 161–169 (2011).

    Article  CAS  Google Scholar 

  12. Kim, C.K. et al. Computational identification of anthocyanin-specific transcription factors using a rice microarray and maximum boundary range algorithm. Evol. Bioinform. 20, 133–141 (2010).

    Article  Google Scholar 

  13. Parenicova, L. et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15, 1538–1551 (2003).

    Article  CAS  Google Scholar 

  14. Folter, S. et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17, 1424–1433 (2005).

    Article  Google Scholar 

  15. Riechmann, J.L. & Meyerowitz, E.M. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379, 633–646 (1998).

    Article  CAS  Google Scholar 

  16. Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y. & Oda, K. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient ingibberellin biosynthesis because of overexpression of a putative AP2transcription factor. Plant J. 37, 720–729 (2004).

    Article  CAS  Google Scholar 

  17. Ruth, R.F. & Tim, J.L. The Arabidopsis Abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599–610 (2000).

    Google Scholar 

  18. Stracke, R., Werber, M. & Weisshaar, B. Related articles, links the R2R3-MYB gene family in arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–56 (2001).

    Article  CAS  Google Scholar 

  19. Ayadi, M., Delaporte, V., Li, Y.F. & Zhou, D.X. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett. 562, 147–154 (2004).

    Article  CAS  Google Scholar 

  20. Kim, S.Y. et al. Induction of Brassica rapa transgenic plant line showing delayed bolting time using over expression of BrFLC genes. Korean J. Intl. Agri. 23, 218–225 (2011).

    Google Scholar 

  21. Kim, C.K. et al. Computational identification of Chinese cabbage anthocyanin-specific genes. BioChip J. 5, 184–192 (2011).

    Article  CAS  Google Scholar 

  22. Irizarry, R.A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 15, e15 (2003).

    Article  Google Scholar 

  23. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JangHo Hahn.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C., Lee, YH., Hong, JK. et al. Identification and characterization of flowering repressor-related genes in Chinese cabbage. BioChip J 6, 120–127 (2012). https://doi.org/10.1007/s13206-012-6203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6203-7

Keywords

Navigation