Skip to main content

Advertisement

Log in

The influence of selenium on expression levels of the rbcL gene in Chlorella vulgaris

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, the effects of selenium on the microalgae Chlorella vulgaris were examined. Four groups of C. vulgaris were cultivated using Bristol medium: group I (control), no sodium selenite (Se); group II, 1 µM Se; group III, 10 µM Se; and group IV, 100 µM Se. Algal biomass samples were collected for biochemical evaluation and gene expression studies on the 21st day of cultivation. The following parameters were investigated: chlorophyll a (Cla), chlorophyll b (Clb) and total carotene content, total protein, and total glutathione (GSH) and malondialdehyde (MDA) levels. Gene expression levels of large subunits of Rubisco (rbcL) were analyzed using real-time quantitative polymerase chain reaction. Total Cla and total carotene in C. vulgaris decreased in high concentrations of Se (100 µM) (around 23 and 42%, respectively) when compared to controls while, Clb content increased by about 10%. 10 µM of Se led to increased GSH levels (3.04 ± 0.02 µg GSH/mg protein) and decreased MDA levels (2.02 ± 0.1 µmol MDA/mg protein) when compared to control groups (1.18 ± 0.04 µg GSH/mg protein and 0.94 ± 0.23 µmol MDA/mg protein), while a significant decrease in GSH and an increase in MDA levels in the presence of 100 µM Se showed the opposite effect. rbcL gene expression increased 1.76 ± 1.37-fold and 0.86 ± 1.33-fold in 10 and 100 µM selenium experiments when compared to control groups. Our results suggest both pro-oxidant and antioxidant activities of Se on C. vulgaris and upregulation of the rbcL gene for the first time. Treatment with low concentrations of Se improves the antioxidant features of the microalgae, C. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araie H, Shiraiwa Y (2009) Selenium utilization strategy by microalgae. Molecules 14:4880–4891

    Article  CAS  Google Scholar 

  • Beutler E (1975) Glutathione in red cell metabolism a manual of biochemical methods, 2nd edn. Grune and Stratton, New York

    Google Scholar 

  • Catal T, Liu H, Bermek H (2008) Selenium induces manganese-dependent peroxidase production by the white-rot fungus Bjerkandera adusta (Willdenow) P. Karsten. Biol Trace Elem Res 123:211–217

    Article  CAS  Google Scholar 

  • Chen YC, Prabhu KS, Mastro AM (2013) Is selenium a potential treatment for cancer metastasis?. Nutrients 5:1149–1168

    Article  Google Scholar 

  • Cooper GM (2000) The chloroplast genome. The Cell: a molecular approach, 2nd edn. ASM Press, Washington, DC. ISBN 0-87893-106-6

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci 97:13430–13435

    Article  CAS  Google Scholar 

  • Dere S, Gunes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll—a, b and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–17

    Google Scholar 

  • Dhingra A, Portis AR, Daniell H (2004) Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci 101:6315–6320

    Article  CAS  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    Article  CAS  Google Scholar 

  • Furness RW, Rainbow S (1990) Heavy metals in the marine environment. CRC Press Inc., Boca Raton

    Google Scholar 

  • Gunes S, Sahinturk V, Karasati P, Sahin IK, Ayhanci A (2016) Cardioprotective effect of selenium against cyclophosphamide-induced cardiotoxicity in rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-016-0858-1

    Google Scholar 

  • Kieliszek M, Błażejak S (2016) Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21(5):609

    Article  Google Scholar 

  • Kouba A, Velíšek J, Stará A, Masojídek J, Kozák P (2014) Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). Biomed Res Int. https://doi.org/10.1155/2014/408270

    Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O et al (2003) Characterization of mammalian selenoproteoms. Science 300:1439–1443

    Article  CAS  Google Scholar 

  • Ledwozyw A, Michalak J, Stepien A, Kadziolka A (1986) The relationship between plasma tryglicerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 155:275–284

    Article  CAS  Google Scholar 

  • Leegood RC (2008) Roles of the bundle sheath cells in leaves of C3 plants. J Exp Bot 59:1663–1673

    Article  CAS  Google Scholar 

  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  Google Scholar 

  • Li M, Zhu Q, Hu C, Chen L, Liu Z, Kong Z (2007) Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): effects on lipid peroxidation and antioxidant enzymes. J Environ Sci 19:1330–1335

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2011) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) method. Methods 25:402–408

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Marin-Navarro J, Moreno J (2003) Modification of the proteolytic fragmentation pattern upon oxidation of cysteines from ribulose 1,5-bisphosphate carboxylase/oxygenase. Biochemistry 42:14930–14938

    Article  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  CAS  Google Scholar 

  • Neumann PM, De Souza MP, Pickering IJ, Terry N (2003) Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ 26:897–905

    Article  CAS  Google Scholar 

  • Ohmiya A, Hirashima M, Yagi M, Tanase K, Yamamizo C (2014) Identification of genes associated with chlorophyll accumulation in flower petals. PLoS ONE 9(12):e113738

    Article  Google Scholar 

  • Panahi Y, Darvishi B, Jowzi N, Beiraghdar F, Sahebkar A (2016) Chlorella vulgaris: a multifunctional dietary supplement with diverse medicinal properties. Curr Pharm Des 22:164–173

    Article  Google Scholar 

  • Qian H, Daniel Sheng G, Liu W, Lu Y, Liu Z, Fu Z (2008) Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environ Toxicol Chem 27:182–187

    Article  CAS  Google Scholar 

  • Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11:821–841

    Article  CAS  Google Scholar 

  • Schiavon M, Ertani A, Parrasia S, Vecchia FD (2017) Selenium accumulation and metabolism in algae. Aquat Toxicol 189:1–8

    Article  CAS  Google Scholar 

  • Sun X, Zhong Y, Huang Z, Yang Y (2014) Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. PLoS ONE 9(11):e112270

    Article  Google Scholar 

  • Tinggi U (2008) Selenium: its role as antioxidant in human health. Environ Health Prev Med 13:102–108

    Article  CAS  Google Scholar 

  • Vítová M, Bišová K, Hlavová M, Zachleder V, Rucki M, Cížková M (2011) Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat Toxicol 102:87–94

    Article  Google Scholar 

  • Yuan H, Wang W, Chen D, Zhu X, Meng L (2016) Effects of a treatment with Se-rich rice flour high in resistant starch on enteric dysbiosis and chronic inflammation in diabetic ICR mice. J Sci Food Agric. https://doi.org/10.1002/jsfa.8011

    Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181:817–831

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Republic of Turkey, Istanbul Development Agency (ISTKA) (Grant No. TR10/16/YNY/0167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tunc Catal.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozakman, G., Yayman, S.G., Sezer Zhmurov, C. et al. The influence of selenium on expression levels of the rbcL gene in Chlorella vulgaris. 3 Biotech 8, 189 (2018). https://doi.org/10.1007/s13205-018-1212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1212-4

Keywords

Navigation