Skip to main content

Advertisement

Log in

Heat Generated by Dental Implant Drills During Osteotomy—A Review

Heat Generated by Dental Implant Drills

  • Review Article
  • Published:
The Journal of Indian Prosthodontic Society

Abstract

Statement of problem: Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. Purpose: To assess the various factors related to implant drills responsible for heat generation during osteotomy. Materials and Methods: To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. Results: The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. Conclusion: The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brånemark P-I (1985) Introduction to osseointegration. In: Brånemark P-I, Zarb GA, Albrektsson T (eds) Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence, Chicago, pp 11–76

    Google Scholar 

  2. Adell R, Lekholm U, Rockler R et al (1981) A 15 year old study of osseointegrated implant in the treatment of the edentulous jaw. Int J Oral Surg 10:387–416

    Article  PubMed  Google Scholar 

  3. Marco F, Milena F, Gianluca G, Vittoria O (2005) Peri-implant osteogenesis in health and osteoporosis. Micron 36:630–644

    Article  PubMed  Google Scholar 

  4. Linder L, Obrant K, Boivin G (1989) Osseointegration of metallic implants II. Transmission electron microscopy in rabbits. Acta Orthop Scand 60:135–139

    Article  PubMed  Google Scholar 

  5. Soballe K (1993) Hydroxyapatite coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand 255:1–58

    Article  Google Scholar 

  6. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM (2005) The biology of bone grafting. J Am Acad Orthop Surg 13:77–86

    PubMed  Google Scholar 

  7. Eberhardt C, Habermann B, Muller S, Schwarz M, Bauss F, Kurth AH (2007) The bisphosphonate ibandronate accelerates osseointegration of hydroxyapatite coated cementless implants in an animal model. J Orthop Sci 12:61–66

    Article  PubMed  Google Scholar 

  8. Watanbe F, Tawada Y, Komatsu S, Hata Y (1992) Heat distribution in bone during preparation of implant sites: heat analysis by real-time thermography. Int J Oral Maxillofac Implants 7:212–219

    Google Scholar 

  9. Watzek G, Matejka M, Grundschober F, Plenk H Jr (1985) Enossale Implantate. Theoretische und morphologische Grundlagen — klinische Konsequenzen. Z Stomatol 82:27–49

    Google Scholar 

  10. Brånemark P-I (1983) Osseointegration and its experimental background. J Prosthet Dent 50:399–410

    Article  PubMed  Google Scholar 

  11. Watzek G, Matejka M, Lill W, Mailath G, Matzka P, Plenk H Jr (1988) Knöchern eingeheilte Implantate (Tübingen, IMZ, Brånemark) — Erfahrungen mit einem Therapiekonzept. Z Stomatol 85:207–233

    PubMed  Google Scholar 

  12. Eriksson R, Albrektsson T (1983) Temperature threshold levels for heat induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Den 50:101–107

    Article  Google Scholar 

  13. Eriksson RA, Albrektsson T (1984) The effect of heat on bone regeneration: an experimental study in rabbits using the bone growth chamber. J Oral Maxillofac Surg 42:705–711

    Article  PubMed  Google Scholar 

  14. Ercoli C, Funkenbusch PD, Lee H-J et al (2004) The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants 19:335–349

    PubMed  Google Scholar 

  15. Albrektsson T (1985) Bone tissue response. In: Brånemark P-I, Zarb GA, Albrektsson T (eds) Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence, Chicago, pp 129–143

    Google Scholar 

  16. Tehemar SH (1999) Factors affecting heat generation during implant site preparation: a review of biologic observations and future considerations. Int J Oral Maxillofac Implants 14:127–136

    PubMed  Google Scholar 

  17. Lavelle C, Wedgewood D (1980) Effect of internal irrigation on frictional heat generated from bone drilling. J Oral Surg 38:499–503

    PubMed  Google Scholar 

  18. Rafel SS (1962) Temperature changes during high-speed drilling on bone. J Oral Surg Anesth Hosp Dent Serv 20:475

    PubMed  Google Scholar 

  19. Matthews LS, Hirsch C (1972) Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am 54:297–308

    PubMed  Google Scholar 

  20. Yacker M, Klein M (1996) The effect of irrigation on osteotomy: depth and bur diameter. Int J Oral Maxillofac Implants 11:634–638

    PubMed  Google Scholar 

  21. Cordioli G, Majzoub Z (1997) Heat generation during implant site preparation: an in vitro study. Int J Oral Maxillofac Implantol 12:186–193

    Google Scholar 

  22. Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM (2006) Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg 64:265–269

    Article  PubMed  Google Scholar 

  23. de Souza Carvalho ACG, Queiroz TP, Okamoto R, Margonar R, Garcia IR, Filho OM (2011) Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias. Int J Oral Maxillofac Implants 26:1193–1201

    Google Scholar 

  24. Sharawy M, Misch C, Weller N, Tehemar S (2002) Heat generation during implant drilling: the significance of motor speed. J Oral Maxillofac Surg 60:1160–1169

    Article  PubMed  Google Scholar 

  25. Haider R, Watzek G, Plenk H (1993) Effects of drill cooling and bone structure on imz implant fixation. Int J Oral Maxillofac Implants 8:83–91

    PubMed  Google Scholar 

  26. Brisman D (1996) The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants 11:35–37

    PubMed  Google Scholar 

  27. Allsobrook OFL, Leichter J, Holborow D, Swain M (2011) Descriptive study of the longevity of dental implant surgery drills. Clin Implant Dent Relat Res 13(3):244–254

    Article  PubMed  Google Scholar 

  28. Harris B, Kohles S (2001) Effects of mechanical and thermal fatigue on dental drill performance. Int J Oral Maxillofac Implants 16:819–826

    PubMed  Google Scholar 

  29. Jun OhH, Wikesjo UM, Kang HS, Ku Y, Eom TG, Koo KT (2011) Effect of implant drill characteristics on heat generation in osteotomy sites: a pilot study. Clin Oral Implants Res 22:722–726

    Article  Google Scholar 

  30. Sener BC, Dergin G, Gursoy B, Kelesoglu E, Slih I (2009) Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin Oral Implant Res 20:294–298

    Article  Google Scholar 

  31. Benington IC, Biagioni PA, Briggs J, Sheridan S, Lamey PJ (2002) Thermal changes observed at implant sites during internal and external irrigation. Clin Oral Implant Res 13:293–297

    Article  Google Scholar 

  32. Sumer M, Misir AF, Telcioglu NT, Guler AU, Yenisey M (2011) Comparison of heat generation during implant drilling using stainless steel and ceramic drills. J Oral Maxillofac Surg 69(5):1350–1354

    Article  PubMed  Google Scholar 

  33. Misir AF, Sumer M, Yenisey M, Ergioglu E (2009) Effect of surgical drill guide on heat generated from implant drilling. J Oral Maxillofac Surg 67(12):2663–2668

    Article  PubMed  Google Scholar 

  34. Watanabe F, Tawada Y, Komatsu S, Hata Y (1990) Heat distribution within the bonetissue by rotary cutting instrument for IMZ implant. Heat analysis by a real-time thermography. Nihon Hotetsu Shika Gakkai Zasshi 34(1):18–24

    Article  PubMed  Google Scholar 

  35. Iyer S, Weiss C, Mehta A (1997) Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part I: relationship between drill speed and heat production. Int J Prostbodont 10:411–414

    Google Scholar 

  36. Iyer S, Weiss C, Mehta A (1997) Effects of drill speed on heat production and the rate and quality of bone formation in dental osteotomies. Part II: relationship between drill speed and healing. Int J Prosthodont 10:411–414

    PubMed  Google Scholar 

  37. Kohles SS, Bowers JR, Vailas AC, Vanderby R Jr (1997) Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens. J Biomech Eng 119:232–236

    Article  PubMed  Google Scholar 

  38. Johnson AT (1998) Biological process engineering: an analogical approach to fluid flow, heat transfer, and mass transfer applied to biological systems. Wiley, New York, pp 262–493

    Google Scholar 

  39. Lundskog J (1972) Heat and bone tissue. An experimental investigation of the thermal properties of bone tissue and threshold levels for thermal injury. Scand J Plast Reconstr Surg 6(suppl 9):5–75

    Google Scholar 

  40. Eichler J, Berg R (1972) Temperatureinwirkung auf die Kompakta beim Bohren, Gewindeschneiden und Eindrehen von Schrauben. Z Orthop 110:909–913

    PubMed  Google Scholar 

  41. Rhinelander FW (1974) The normal circulation of bone and its response to surgical intervention. J Biomed Mater Res 8:87–90

    Article  PubMed  Google Scholar 

  42. Tetsch P (1974) Development of raised temperature after osteotomies. J Maxillofac Surg 2:141–145

    Article  PubMed  Google Scholar 

  43. Huiskes R (1980) Some fundamental aspects of human joint replacement. Analyses of stresses and heat conduction in bone-prosthesis structures. Acta Orthop Scand 185:1–208

    Google Scholar 

  44. Roberts WE, Turley PK, Brezniak N, Fielder PJ (1987) Bone physiology and metabolism. CDA J 10:54–61

    Google Scholar 

  45. Eriksson A, Albrektsson T, Grane B, McQueen D (1982) Thermal injury to bone: a vital-microscopic description of heat effects. Int J Oral Surg 11:115–121

    Article  PubMed  Google Scholar 

  46. Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18:261–268

    Article  PubMed  Google Scholar 

  47. Albrektsson T, Eriksson A (1985) Thermally induced bone necrosis in rabbits: relation to implant failure in humans. Clin Orthop 195:311–312

    Article  PubMed  Google Scholar 

  48. Truhlar RS, Morris HF, Ochi S et al (1994) Second stage failures related to bone quality in patients receiving endosseous dental implants: DICRG Interim report #7. Implant Dent 3:252–255

    Article  PubMed  Google Scholar 

  49. Mann V, Huber C, Kogianni G et al (2006) The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J Musculoskelet Neuronal Interact 6:408–417

    PubMed Central  PubMed  Google Scholar 

  50. Nomura S, Takano-Yamamoto T (2000) Molecular events caused by mechanical stress in bone. Matrix Biol 19:91–96

    Article  PubMed  Google Scholar 

  51. Takai E, Mauck RL, Hung CT et al (2004) Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure. J Bone Miner Res 19:1403–1410

    Article  PubMed  Google Scholar 

  52. Ocarino NM, Gomes MG, Melo EG (2006) Técnica histoquímica aplicada ao tecido ósseodesmineralizado e parafinado para o estudo do osteócito e suas conexões. J Bras Patol Med Lab 42:37–42

    Article  Google Scholar 

  53. Bonewald LF (2002) Osteocytes: a proposed multifunctional bone cell. J Musculoskelet Neuronal Interact 2:239–241

    PubMed  Google Scholar 

  54. Nagai M, Hayakawa T, Fukatsu A et al (2002) In vitro study of collagen coating of titanium implants for initial cell attachment. Dent Mater J 21:250–260

    Article  PubMed  Google Scholar 

  55. Rammelt S, Schulze E, Bernhardt R et al (2004) Coating of titanium implants with type I collagen. J Orthop Res 22:1025–1034

    Article  PubMed  Google Scholar 

  56. Woo KM, Choi Y, Ko S-H et al (2002) Osteoprotegerin is present on the membrane of osteoclasts isolated from mouse long bones. Exp Mol Med 34:347–352

    Article  PubMed  Google Scholar 

  57. Crotti TN, Smith MD, Findlay DM et al (2004) Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss: expression of receptor activator NFKappaB, RANK ligand and osteoprotegerin. Biomaterials 25:565–573

    Article  PubMed  Google Scholar 

  58. Bucay N, Sarosi I, Dunstan CR et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  PubMed Central  PubMed  Google Scholar 

  59. Khosla S (2001) Mini review: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055

    Article  PubMed  Google Scholar 

  60. Rogers A, Eastell R (2005) Review: circulating osteoprotegerin and receptor activator for nuclear factor kB ligant: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6331

    Article  PubMed  Google Scholar 

  61. Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84:1032–1044

    PubMed  Google Scholar 

  62. Thorwarth M, Rupprecht S, Falk S et al (2005) Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (prp)—an immunohistochemical analysis. Biomaterials 26:2575–2584

    Article  PubMed  Google Scholar 

  63. Rammelt S, Neumann M, Hanisch U et al (2005) Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J Biomed Mater Res 73:284–294

    Article  Google Scholar 

  64. Lekholm U (1983) Clinical procedures for treatment with osseointegrated dental implants. J Prosthet Dent 50:116–120

    Article  PubMed  Google Scholar 

  65. Kirschner H, Meyer W (1975) Entwicklung einer Innenkühlung für chirurgische Bohrer. Dtsch Zahnärztl Z 30:436–438

    PubMed  Google Scholar 

  66. Seeger P, Tetsch P (1978) Tierexperimentelle Untersuchungen zur Regeneration genormter Knochendefekte bei unterschiedlichen Kühlverfahren. Dtsch Zahnärztl Z 33:870–872

    PubMed  Google Scholar 

  67. Schmitt W, Weber HJ, Jahn D (1988) Thermische Untersuchungen beim Bohren in kortikalem Knochen unter Verwendung verschiedener Kühlsysteme. Dtsch Zähnarztl Z 43:802–805

    PubMed  Google Scholar 

  68. Kirschner H, Bolz U, Michel G (1984) Thermometrische Untersuchungen mit innen- und ungekühlten Bohrern an Kieferknochen und Zähnen. Dtsch Zahnärztl Z 39:30–32

    PubMed  Google Scholar 

  69. Oberg E, Jones FD, Horton HL (1989) Machinery’s handbook, 23rd edn. Industrial, New York, pp 716–729

    Google Scholar 

  70. Thompson HC (1958) Effect of drilling into bone. J Oral Surg 16:22–30

    PubMed  Google Scholar 

  71. Medical Data International (1999) U.S. Markets for dental implants and dental bone substitutes. Medical Data International, Cary

    Google Scholar 

  72. Jochum RM, Reichart PA (2000) Influence of multiple use of Timedur titanium cannon drills: thermal response and scanning electron microscopic findings. Cin Oral Implants Res 11:139–143

    Article  Google Scholar 

  73. Scarano A, Carinci F, Quaranta A et al (2007) Effects of bur wear during implant site preparation: an in vitro study. Int J Immunopathol Pharmacol 20(1 suppl 1):23–26

    PubMed  Google Scholar 

  74. Sutter F, Krekeler G, Schwammerger AE, Sutter FJ (1992) Atraumatic surgical technique and implant bed preparation. Quintessence Int 23:811–816

    PubMed  Google Scholar 

  75. Pallan FG (1960) Histological changes in bone after insertion of skeletal fixation pins. J Oral Surg Anesth Hosp D Serv 18:400–408

    Google Scholar 

  76. Eriksson RA, Albrektsson T, Albrektsson B (1984) Temperature measurements at drilling in cortical bone in vivo. Heat induced bone tissue injury [Postdoctoral thesis]. University of Goteborg, Goteborg, pp 41–43

    Google Scholar 

  77. Hobkirk J, Rusiniak K (1977) Investigation of variable factors in drilling bone. J Oral Surg 35:968–973

    PubMed  Google Scholar 

  78. Reingewirtz Y, Szmukler-Moncler S, Senger B (1997) Influence of different parameters on bone heating and drilling in implantology. Clin Oral Implant Res 8:189–197

    Article  Google Scholar 

  79. Eriksson R, Adell R (1986) Temperatures during drilling for the placement of implants using the osseointegration technique. J Oral Maxillofac Surg 44:4–7

    Article  PubMed  Google Scholar 

  80. Abouzgia MB, James DF (1995) Measurements of shaft speed while drilling through bone. J Oral Maxillofac Surg 53:1308–1315

    Article  PubMed  Google Scholar 

  81. Abouzgia NB, Symington JM (1996) Effect of drill speed on bone temperature. Int J Oral Maxillofac Surg 25:394–399

    Article  PubMed  Google Scholar 

  82. Abouzgia MB, James DF (1997) Temperature rise during drilling through bone. Int J Oral Maxillofac Implants 12:342–353

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S.K., Chowdhary, R. Heat Generated by Dental Implant Drills During Osteotomy—A Review. J Indian Prosthodont Soc 14, 131–143 (2014). https://doi.org/10.1007/s13191-014-0350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13191-014-0350-6

Keywords

Navigation