Revista Matemática Complutense

, Volume 26, Issue 1, pp 1–32

Integral operators on Bσ-Morrey-Campanato spaces


  • Yasuo Komori-Furuya
    • School of High Technology for Human WelfareTokai University
  • Katsuo Matsuoka
    • College of EconomicsNihon University
    • Department of MathematicsIbaraki University
  • Yoshihiro Sawano
    • Department of MathematicsKyoto University

DOI: 10.1007/s13163-011-0091-6

Cite this article as:
Komori-Furuya, Y., Matsuoka, K., Nakai, E. et al. Rev Mat Complut (2013) 26: 1. doi:10.1007/s13163-011-0091-6


We show the boundedness of the Hardy-Littlewood maximal operator, singular and fractional integral operators, and more general sublinear operators on Bσ-Morrey-Campanato spaces. These function spaces have been introduced recently to unify central Morrey spaces, λ-central mean oscillation spaces and usual Morrey-Campanato spaces. Using the Bσ-Morrey-Campanato spaces, we can study both local and global regularities of functions simultaneously, and unify a series of results on the boundedness of operators on several classical function spaces.


Central Morrey spaceCentral BMO spaceMorrey-Campanato spaceMaximal functionSublinear operatorSingular integral operatorFractional integral operator

Mathematics Subject Classification (2000)


Copyright information

© Revista Matemática Complutense 2011