Revista Matemática Complutense

, Volume 26, Issue 1, pp 1–32

Integral operators on Bσ-Morrey-Campanato spaces

  • Yasuo Komori-Furuya
  • Katsuo Matsuoka
  • Eiichi Nakai
  • Yoshihiro Sawano
Article

DOI: 10.1007/s13163-011-0091-6

Cite this article as:
Komori-Furuya, Y., Matsuoka, K., Nakai, E. et al. Rev Mat Complut (2013) 26: 1. doi:10.1007/s13163-011-0091-6

Abstract

We show the boundedness of the Hardy-Littlewood maximal operator, singular and fractional integral operators, and more general sublinear operators on Bσ-Morrey-Campanato spaces. These function spaces have been introduced recently to unify central Morrey spaces, λ-central mean oscillation spaces and usual Morrey-Campanato spaces. Using the Bσ-Morrey-Campanato spaces, we can study both local and global regularities of functions simultaneously, and unify a series of results on the boundedness of operators on several classical function spaces.

Keywords

Central Morrey spaceCentral BMO spaceMorrey-Campanato spaceMaximal functionSublinear operatorSingular integral operatorFractional integral operator

Mathematics Subject Classification (2000)

42B3546E3546E3026A33

Copyright information

© Revista Matemática Complutense 2011

Authors and Affiliations

  • Yasuo Komori-Furuya
    • 1
  • Katsuo Matsuoka
    • 2
  • Eiichi Nakai
    • 3
  • Yoshihiro Sawano
    • 4
  1. 1.School of High Technology for Human WelfareTokai UniversityNumazuJapan
  2. 2.College of EconomicsNihon UniversityTokyoJapan
  3. 3.Department of MathematicsIbaraki UniversityMitoJapan
  4. 4.Department of MathematicsKyoto UniversityKyotoJapan