Skip to main content
Log in

Meteorological influences of eddy-resolving ocean assimilation around the cold tongue to the north of the Japanese islands during winter 2004/2005

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Use of ocean data assimilation in meteorological applications is expected to reveal the influence of cloud-covered oceanic mesoscale processes on wintertime weather and climate in coastal areas. In particular, eddy-resolving Ocean Circulation Model (OCM) data assimilation that reproduces seasonally persistent oceanic mesoscale eddies is useful when simulating coastal precipitation. In the present study, the OCM-assimilation sea surface temperature (SST) is applied to a long-term atmospheric simulation over the Japan/East Sea area in the 2004/2005 winter season (December–February, DJF), to investigate seasonal and daily influences of oceanic mesoscale eddies on precipitation. The simulated winter precipitation is improved by the OCM assimilation via the DJF evaporation around a cold tongue. The strong intrusion of the southeast-directed cold tongue reduces the degree of overestimation by coastal precipitation simulations in December and January. In contrast, the ocean assimilation barely improves the simulation results in February because of weak intrusion of the cold tongue. In December and January, an abruptly large anomaly of northwesterly surface wind (> 1 m s−1) resulting from the OCM assimilation often influences 3-hour precipitation in the downstream area of the cold tongue. In contrast, the slowly-varying anomaly of evaporation does not necessarily lead to daily precipitation anomalies, although the DJF evaporation anomaly is important in the DJF precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chen, S. S., W. Zhao, J. E. Tenerelli, R. H. Evans, and V. Halliwell, 2001: Impact of the AVHRR sea surface temperature on atmospheric forcing in the Japan/East Sea, Geophys. Res. Lett., 28, 4539–4542.

    Article  Google Scholar 

  • Grell, G. A., J. Dudhia and D. R. Stauffer, 1995: A description of the fifthgeneration Penn State/NCAR mesoscale model (MM5), NCAR Tech. Note, NCAR/TN-398+STR, 122pp.

  • Guan, L. and H. Kawamura, 2004: Merging satellite infrared and microwave SSTs: methodology and evaluation of the new SST, J. Oceanogr., 60, 905–912.

    Article  Google Scholar 

  • Hirose, N., and K. Fukudome, 2006: Monitoring the Tsushima Warm Current improves seasonal prediction of the regional snowfall, Sci, Online Lett. Atmos., 2, 61–63.

    Google Scholar 

  • ____, H. Kawamura, H. J. Lee, and J.-H. Yoon, 2007: Sequential forecasting of the surface and subsurface conditions in the Japan Sea, J. Oceanogr., 63, 467–481.

    Article  Google Scholar 

  • ____, K. Nishimura and M. Yamamoto, 2009: Observational evidence of a warm ocean current preceding a winter teleconnection pattern in the northwestern Pacific, Geophys. Res. Lett., 34, L09705, doi:10.1029/2009GL037448.

  • Jury, M. R., Valentine, H. R. Lutjeharms, J. R. E., 1993: Influence of the Agulhas Current on summer rainfall along the southeast coast of South Africa. J. Appl. Meteorol., 32, 1282–1287.

    Article  Google Scholar 

  • Makihara, Y., N. Uekiyo, A. Tabata, and Y. Abe, 1996: Accuracy of Radar-AMeDAS Precipitation, IEICE Trans. Commun., E79-B, 751–762.

    Google Scholar 

  • Manabe, S., 1957: On the modification of air mass over Japan Sea when the outburst of cold air predominates, J. Meteor. Soc. Japan, 35, 311–326.

    Google Scholar 

  • Messager, C., H. Galle, and O. Brasseur, 2004: Precipitation sensitivity to regional SST in a regional climate simulation during the West African monsoon for two dry years, Climate Dyn., 22, 249–266.

    Article  Google Scholar 

  • Morimoto, A. and T. Yanagi, 2001: Variability of sea surface circulation in the Japan Sea, J. Oceanogr., 57, 1–13.

    Article  Google Scholar 

  • Ohno, H., K. Yokoyama, Y. Kominami, and S. Inoue, 1998: ANNEX 5 Country reports (Hokuriku, Japan), WMO solid precipitation measurement intercomparison: final report, WMO/TD — No. 872, 157–161.

  • Shimada, T. and H. Kawamura, 2008: Satellite evidence of wintertime atmospheric boundary layer responses to multiple SST fronts in the Japan Sea, Geophys. Res. Lett., 35, L23602, doi:10.1029/2008GL035810.

  • Singleton, A. T. and C. J. C. Reason, 2006: Numerical simulations of a severe rainfall event over the Eastern Cape coast of South Africa: sensitivity to sea surface temperature and topography. Tellus, 58A, 355–367.

    Google Scholar 

  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the Eastern Equatorial Pacific: seasonal and interannual variability. J. Climate, 2, 1492–1499.

    Article  Google Scholar 

  • Yamamoto, M. and N. Hirose, 2007: Impact of SST reanalyzed using OGCM on weather simulation: A case of a developing cyclone in the Japan-Sea area, Geophys. Res. Lett., 34, L05808, doi:10.1029/2006GL028386.

  • ____, and _____, 2008: Influence of assimilated SST on regional atmospheric simulation: A case of a cold-air outbreak over the Japan Sea, Atmos. Sci. Lett., 9, 13–17.

    Article  Google Scholar 

  • ____, and _____, 2009: Regional atmospheric simulation of monthly precipitation using high-resolution OGCM-assimilation SST: Application to the wintertime Japan Sea., Mon. Wea. Rev., 137, 2164–2174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, Y., Yamamoto, M. & Hirose, N. Meteorological influences of eddy-resolving ocean assimilation around the cold tongue to the north of the Japanese islands during winter 2004/2005. Asia-Pacific J Atmos Sci 47, 319–327 (2011). https://doi.org/10.1007/s13143-011-0019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-011-0019-6

Key words

Navigation